MODEL PAX2A – 1/8 DIN ANALOG PANEL METER

DESCRIPTION
The PAX2A Analog Panel Meter offers many features and performance capabilities to suit a wide range of industrial applications. The PAX2A has a universal input to handle various input signals including DC Voltage/Current, Process, Resistance and Temperature. The optional plug-in output cards allow the opportunity to configure the meter for present applications, while providing easy upgrades for future needs. The PAX2A employs a dual line, tri-color display with a large 0.71", tri-color 6 digit top display line and a 0.35", 9 digit green bottom display line.

The meter provides a MAX and MIN reading memory with programmable capture time. The capture time is used to prevent detection of false max or min readings which may occur during start-up or unusual process events.

The signal totalizer (integrator) can be used to compute a time-input product. This can be used to provide a readout of totalized flow or calculate service intervals of motors, pumps, etc. The meter has up to four setpoint outputs, implemented on plug-in option cards. The plug-in cards provide dual FORM-C relays, quad FORM-A, or either quad sinking or quad sourcing open collector logic outputs. The setpoint alarms can be configured to suit a variety of control and alarm requirements.

Communication and bus capabilities are also available as option cards. These include RS232, RS485, DeviceNet, and Profibus-DP. The PAX2A can be programmed to utilize ModBus protocol. With ModBus, the user has access to most configuration parameters. Readout values and setpoint alarm values can be controlled through the bus. Additionally, the meter has a feature that allows a remote computer to directly control the outputs of the meter.

The PAX2A includes a built-in USB programming port. With a Windows® based program, made available by Red Lion Controls, configuration data can be downloaded to the PAX2A without the need of any additional option cards.

A linear DC output signal is available as an optional plug-in card. The card provides either 20 mA or 10 V signals. The output can be scaled independent of the input range and can track either the input, totalizer, max or min readings.

The meter has been specifically designed for harsh industrial environments. With NEMA 4X/IP65 sealed bezel and extensive testing of noise effects and CE requirements, the meter provides a tough reliable application solution.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in this literature or on equipment must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired. Do not use this unit to directly command motors, valves, or other actuators not equipped with safeguards. To do so can be potentially harmful to persons or equipment in the event of a fault to the unit.

Note: Recommended minimum clearance (behind the panel) for mounting clip installation is 2.1" (53.4) H x 5.5" (140) W.
TABLE OF CONTENTS

Ordering Information .. 2
General Meter Specifications 3
Optional Plug-In Cards .. 5
Installing the Meter .. 6
Setting the Jumpers ... 6
Installing the Plug-In Cards 7
Wiring the Meter .. 7

Reviewing the Front Buttons and Display 9

PAX2A Display Loops ... 10
Programming the PAX2A .. 11
PAX2A Modbus Register Table 24
Factory Service Operations 31
Troubleshooting Guide ... 33
Parameter Value Chart ... 33
Programming Overview ... 35

ORDERING INFORMATION

Meter Part Numbers

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAX2A</td>
<td>Universal DC Analog Input Panel Meter</td>
<td>PAX2A000</td>
</tr>
</tbody>
</table>

Option Card and Accessories Part Numbers

<table>
<thead>
<tr>
<th>TYPE</th>
<th>MODEL NO.</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional Plug-In Cards</td>
<td>PAXCDS</td>
<td>Dual Setpoint Relay Output Card</td>
<td>PAXCDS10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad Setpoint Relay Output Card</td>
<td>PAXCDS20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad Setpoint Sinking Open Collector Output Card</td>
<td>PAXCDS30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quad Setpoint Sourcing Open Collector Output Card</td>
<td>PAXCDS40</td>
</tr>
<tr>
<td></td>
<td>PAXCDC</td>
<td>RS485 Serial Communications Card with Terminal Block</td>
<td>PAXCDC10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extended RS485 Serial Communications Card with Dual RJ11 Connector</td>
<td>PAXCDC1C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS232 Serial Communications Card with Terminal Block</td>
<td>PAXCDC20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Extended RS232 Serial Communications Card with 9 Pin D Connector</td>
<td>PAXCDC2C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DeviceNet Communications Card</td>
<td>PAXCDC30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Profibus-DP Communications Card</td>
<td>PAXCDC50</td>
</tr>
<tr>
<td></td>
<td>PAXCDL</td>
<td>Analog Output Card</td>
<td>PAXCDL10</td>
</tr>
<tr>
<td></td>
<td>SFCRD2</td>
<td>Crimson PC Configuration Software for Windows 2000 and XP</td>
<td>SFCRD200</td>
</tr>
</tbody>
</table>

Notes:

1. For Modbus communications use RS485 Communications Output Card and configure communication (LFE) parameter for Modbus.
2. Crimson software is available for free download from http://www.redlion.net/
General Meter Specifications

1. **DISPLAY:** Negative image LCD
 Top Line - 6 digit, 0.71” (18 mm), with tri-color backlight (red, green or orange), display range: -1999999 to 999,999,999;
 Bottom Line - 9 digit, 0.35” (8.9 mm), with green backlight, display range: -19,999,999 to 999,999,999

2. **POWER:**
 AC Power: 50 to 250 VAC, 50/60 Hz, 14 VA
 DC Power: 21.6 to 250 VDC, 8 W
 Isolation: 2500 Vrms for 1 min. to all inputs and outputs.

3. **ANNUNCIATORS:** Backlight color: Red
 - setpoint alarm 1
 - setpoint alarm 2
 - setpoint alarm 3
 - setpoint alarm 4
 Line 1 Units Display – programmable 3 digit units annunciator with tri-color backlight (red, green or orange)

4. **KEYPAD:** 2 programmable function keys, 4 keys total

5. **A/D CONVERTER:** 24 bit resolution

6. **UPDATE RATES:**
 A/D conversion rate: programmable 5 to 160 readings/sec.
 Step response:
 - A/D conversion rate: programmable 5 to 160 readings/sec.
 - Step response

7. **DISPLAY MESSAGES:**
 "OLOL" - Appears when measurement exceeds + signal range.
 "ULUL" - Appears when measurement exceeds - signal range.
 "Short" - Appears when shorted sensor is detected. (RTD range only)

8. **INPUT CAPABILITIES:**
 Current Input:
<table>
<thead>
<tr>
<th>INPUT TYPE</th>
<th>RANGE</th>
<th>ACCURACY</th>
<th>IMPEDANCE</th>
<th>RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage/Resistance</td>
<td>± 250 mADC</td>
<td>0.03% of rdg + 0.03µA</td>
<td>0.12% of rdg + 0.04µA</td>
<td>1.1 KΩ</td>
</tr>
<tr>
<td>Thermocouple</td>
<td>± 2.5 mADC</td>
<td>0.03% of rdg + 0.3µA</td>
<td>0.12% of rdg + 0.4µA</td>
<td>111 Ω</td>
</tr>
<tr>
<td>RTD</td>
<td>± 25 mADC</td>
<td>0.03% of rdg + 3µA</td>
<td>0.12% of rdg + 4µA</td>
<td>11.1 Ω</td>
</tr>
<tr>
<td>RTD</td>
<td>± 250 mADC</td>
<td>0.05% of rdg + 30µA</td>
<td>0.12% of rdg + 40µA</td>
<td>1.1 Ω</td>
</tr>
<tr>
<td>± 2ADC</td>
<td>0.5% of rdg + 0.3µA</td>
<td>0.7% of rdg + 0.4µA</td>
<td>0.1 Ω</td>
<td>0.1mA</td>
</tr>
</tbody>
</table>

9. **INPUT RANGE ACCURACY**
<table>
<thead>
<tr>
<th>INPUT TYPE</th>
<th>RANGE</th>
<th>ACCURACY</th>
<th>IMPEDANCE</th>
<th>RESOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 250 mADC</td>
<td>(0 to 28°C)</td>
<td>0.03% of rdg + 30µV</td>
<td>0.12% of rdg + 40µV</td>
<td>451 KΩ</td>
</tr>
<tr>
<td>± 2.0 VDC</td>
<td>(0 to 28°C)</td>
<td>0.03% of rdg + 3mV</td>
<td>0.12% of rdg + 4mV</td>
<td>451 KΩ</td>
</tr>
<tr>
<td>± 10 VDC</td>
<td>(0 to 28°C)</td>
<td>0.03% of rdg + 3mV</td>
<td>0.12% of rdg + 4mV</td>
<td>451 KΩ</td>
</tr>
<tr>
<td>± 25 VDC</td>
<td>(0 to 28°C)</td>
<td>0.03% of rdg + 3mV</td>
<td>0.12% of rdg + 4mV</td>
<td>451 KΩ</td>
</tr>
<tr>
<td>± 100 VDC</td>
<td>(0 to 28°C)</td>
<td>0.3% of rdg + 30mV</td>
<td>0.12% of rdg + 40mV</td>
<td>451 KΩ</td>
</tr>
<tr>
<td>± 200 VDC</td>
<td>(0 to 28°C)</td>
<td>0.3% of rdg + 30mV</td>
<td>0.12% of rdg + 40mV</td>
<td>451 KΩ</td>
</tr>
</tbody>
</table>

Higher resolution can be achieved via input scaling.

Temperature Inputs:
READOUT:
Scale: F or C
Offset Range: -199,999 to 999,999 display units.

Thermocouple Inputs:
Input Impedance: 20MΩ
Lead Resistance Effect: 0.03 µV/°
Max Continuous Overvoltage: 30 V

<table>
<thead>
<tr>
<th>INPUT TYPE</th>
<th>RANGE</th>
<th>ACCURACY</th>
<th>ACCURACY</th>
<th>STANDARD</th>
<th>WIRE COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>-200 to 400°C</td>
<td>1.2°C</td>
<td>2.1°C</td>
<td>ITS-90</td>
<td>(+) blue (-) red (+) white (+) blue</td>
</tr>
<tr>
<td>E</td>
<td>-200 to 750°C</td>
<td>1.0°C</td>
<td>2.4°C</td>
<td>ITS-90</td>
<td>(+) purple (-) red (+) brown (-) blue</td>
</tr>
<tr>
<td>J</td>
<td>-200 to 760°C</td>
<td>1.1°C</td>
<td>2.3°C</td>
<td>ITS-90</td>
<td>(+) white (-) red (+) yellow (-) blue</td>
</tr>
<tr>
<td>K</td>
<td>-200 to 1250°C</td>
<td>1.3°C</td>
<td>3.4°C</td>
<td>ITS-90</td>
<td>(+) yellow (-) red (+) brown (-) blue</td>
</tr>
<tr>
<td>R</td>
<td>0 to 1780°C</td>
<td>1.9°C</td>
<td>4.0°C</td>
<td>IT5-90</td>
<td>no standard (-) blue (-) red (+) orange (-) blue</td>
</tr>
<tr>
<td>S</td>
<td>0 to 1780°C</td>
<td>1.9°C</td>
<td>4.0°C</td>
<td>IT5-90</td>
<td>no standard (+) blue (-) red (+) orange (-) blue</td>
</tr>
<tr>
<td>B</td>
<td>150 to 300°C</td>
<td>5.7°C</td>
<td>4.4°C</td>
<td>IT5-90</td>
<td>no standard no standard no standard</td>
</tr>
<tr>
<td>N</td>
<td>-200 to 1300°C</td>
<td>1.3°C</td>
<td>3.1°C</td>
<td>IT5-90</td>
<td>(+) orange (-) red (+) orange (-) blue</td>
</tr>
<tr>
<td>C</td>
<td>(W5/W26)</td>
<td>0 to 2315°C</td>
<td>1.9°C</td>
<td>6.1°C</td>
<td>ASTM E988-90**</td>
</tr>
</tbody>
</table>

RTD Inputs:
Type: 3 or 4 wire, 2 wire can be compensated for lead wire resistance
Excitation current: 100 ohm range: 136.5 µA ±10%
10 ohm range: 2.05 mA ±10%
Lead resistance: 100 ohm range: 10 ohm/lead max.
10 ohm range: 3 ohms/lead max.

Max. continuous overload: 30 V

<table>
<thead>
<tr>
<th>INPUT TYPE</th>
<th>RANGE</th>
<th>ACCURACY</th>
<th>ACCURACY</th>
<th>STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ohm Pt alpha = 0.00385</td>
<td>-200 to 850°C</td>
<td>0.4°C</td>
<td>1.6°C</td>
<td>IEC 751</td>
</tr>
<tr>
<td>100 ohm Pt alpha = 0.00392</td>
<td>-200 to 850°C</td>
<td>0.4°C</td>
<td>1.6°C</td>
<td>no official standard</td>
</tr>
<tr>
<td>120 ohm Nickel alpha = 0.00672</td>
<td>-80 to 259°C</td>
<td>0.2°C</td>
<td>0.5°C</td>
<td>no official standard</td>
</tr>
<tr>
<td>10 ohm Copper alpha = 0.00427</td>
<td>-110 to 260°C</td>
<td>0.4°C</td>
<td>0.9°C</td>
<td>no official standard</td>
</tr>
</tbody>
</table>

Resistance Inputs:
READOUT:
COMPLIANCE MAX CONT. OVERLOAD | RESOLUTION |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100 ohm</td>
<td>0.05% of rdg +0.03 ohm</td>
<td>0.2% of rdg +0.04 ohm</td>
</tr>
<tr>
<td>1000 ohm</td>
<td>0.05% of rdg +0.3 ohm</td>
<td>0.2% of rdg +0.4 ohm</td>
</tr>
<tr>
<td>10 Kohm</td>
<td>0.05% of rdg +1 ohm</td>
<td>0.2% of rdg +1.5 ohm</td>
</tr>
</tbody>
</table>

Higher resolution can be achieved via input scaling.

* After 20 min. warm-up, @ 5 sample per second input rate. Accuracy is specified in two ways: Accuracy over an 18 to 28°C and 15 to 75% RH environment; and Accuracy over a 0 to 50°C and 0 to 85% RH (non-condensing) environment. Accuracy specified over the 0 to 50°C operating range includes meter tempo and ice point tracking effects. The specification includes the A/D conversion errors, linearization conformity, and thermocouple ice point compensation. Total system accuracy is the sum of meter and probe errors. Accuracy may be improved by field calibrating the meter readout at the temperature of interest.

** These curves have been corrected to ITS-90.
9. **EXCITATION POWER**: Jumper selectable
 Transmitter Power: +18 VDC @ 50 mA
 Reference Voltage: ± 2 VDC, ± 2%
 Compliance: 10 KΩ load min.
 Temperature Coefficient: 40 ppm/°C
 Reference Current: 1.05 mA, ± 2%
 Compliance: 10 KΩ load max.
 Temperature Coefficient: 40 ppm/°C max.

10. **USER INPUTS**: Two programmable user inputs
 Max. Continuous Input: 30 VDC
 Isolation To Sensor Input Common: Not isolated.
 Response Time: 12 msec. max.
 Logic State: User programmable (Hi/Low) for sink/source (Lo/Hi)

INPUT STATE (Hi/Low)	LO/SINK	HI/SOURCE
Active	$V_{\text{IN}} < 1.1 \text{ VDC}$	$V_{\text{IN}} > 2.2 \text{ VDC}$
Inactive	$V_{\text{IN}} > 2.2 \text{ VDC}$	$V_{\text{IN}} < 1.1 \text{ VDC}$

11. **TOTALIZER**:
 Time Base: second, minute, hour, or day
 Batch: Can accumulate (gate) input display from a user input
 Time Accuracy: 0.01% typical
 Decimal Point: 0 to 0.0000
 Scale Factor: 0.001 to 65.000
 Low Signal Cut-out: -199,999 to 999,999
 Total: 6 digits on Line 1; 9 digits on Line 2

12. **CUSTOM LINEARIZATION**:
 Data Point Pairs: Selectable from 2 to 16
 Display Range: -199,999 to 999,999
 Decimal Point: 0 to 0.0000

13. **MEMORY**: Nonvolatile FRAM memory retains all programmable parameters and display values.

14. **ENVIRONMENTAL CONDITIONS**:
 Operating Temperature Range: 0 to 50 °C (0 to 45 °C with all three plug-in cards installed)
 Storage Temperature Range: -40 to 60 °C
 Operating and Storage Humidity: 0 to 85% max. RH non-condensing
 Altitude: Up to 2000 meters

15. **CERTIFICATIONS AND COMPLIANCES**:
 SAFETY:
 IEC 61010-1, EN 61010-1: Safety requirements for electrical equipment for measurement, control, and laboratory use, Part 1.
 IP65 Enclosure rating (Face only), IEC 529
 IP20 Enclosure rating (Rear of unit), IEC 529
 Type 4X Indoor Enclosure rating (Face only), UL50
 ELECTROMAGNETIC COMPATIBILITY:
 Immunity to Industrial Locations:
 Electrostatic discharge EN 61000-4-2
 Electromagnetic RF fields EN 61000-4-3
 Fast transients (burst) EN 61000-4-4
 Surge EN 61000-4-5
 RF conducted interference EN 61000-4-6
 Power freq magnetic fields EN 61000-4-8
 AC power EN 61000-4-11
 Short interruptions
 Emissions:
 Emissions EN 55011 Class A

 Notes:
 2. Criterion B: Temporary loss of performance from which the unit self-reCOVERS.
 Refer to EMC Installation Guidelines section of the bulletin for additional information.

16. **CONNECTIONS**: High compression cage-clamp terminal block
 Wire Strip Length: 0.3” (7.5 mm)
 Wire Gauge Capacity: One 14 AWG (2.55 mm) solid, two 18 AWG (1.02 mm) or four 20 AWG (0.61 mm)

17. **CONSTRUCTION**: This unit is rated for NEMA 4X/IP65 indoor use. IP20

18. **WEIGHT**: 8 oz. (226.8 g)
Adding Option Cards

The PAX2A meters can be fitted with up to three optional plug-in cards. The details for each plug-in card can be reviewed in the specification section below. Only one card from each function type can be installed at a time. The function types include Setpoint Alarms (PAXCDS), Communications (PAXCDC), and Analog Output (PAXCDL). The plug-in cards can be installed initially or at a later date.

COMMUNICATION CARDS (PAXCDC)

A variety of communication protocols are available for the PAX2A meter. Only one PAXCDC card can be installed at a time. Note: For Modbus communications use RS485 Communications Output Card and configure communication (波特率) parameter for Modbus.

- **PAXCDC10** - RS485 Serial (Terminal)
- **PAXCDC1C** - RS485 Serial (Connector)
- **PAXCDC20** - RS232 Serial (Terminal)
- **PAXCDC2C** - RS232 Serial (Connector)

TYPE

Communication Type: RLC Protocol (ASCII), Modbus RTU, and Modbus ASCII

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.

Data: 7/8 bits

Parity: no, odd or even

Bus Address: Selectable 0 to 99 (RLC Protocol), or 1 to 247 (Modbus Protocol), Max. 32 meters per line (RS485)

Transmit Delay: Selectable for 0 to 0.250 sec (+2 msec min)

DEVICENET™ CARD

Compatibility: Group 2 Server Only, not UCMM capable

Baud Rates: 125 Kbaud, 250 Kbaud, and 500 Kbaud

Bus Interface: Phillips #2C250 or equivalent with MIS wiring protection per DeviceNet™ Volume I Section 10.2.2

Node Isolation: Bus powered, isolated node

Host Isolation: 500 Vrms for 1 minute (50 V working) between DeviceNet™ and meter input common.

PROFIBUS-DP CARD

Fieldbus Type: Profibus-DP as per EN 50170, implemented with Siemens SPC3 ASIC

Conformance: PNO Certified Profibus-DP Slave Device

Baud Rates: Automatic baud rate detection in the range 9.6 Kbaud to 12 Mbaud

Station Address: 0 to 125, set by rotary switches.

Connection: 9-pin Female D-Sub connector

Network Isolation: 500 Vrms for 1 minute (50 V working) between Profibus network and sensor and user input commons. Not isolated from all other commons.

PROGRAMMING SOFTWARE

Crimson® software is a Windows® based program that allows configuration of the PAX® meter from a PC. Crimson offers standard drop-down menu commands, that make it easy to program the meter. The meter’s program can then be saved in a PC file for future use. Crimson can be downloaded at www.redlion.net

WARNING: Disconnect all power to the unit before installing plug-in cards.

SETPOINT CARDS (PAXCDS)

The PAX2A meter has 4 available setpoint alarm output plug-in cards. Only one PAXCDS card can be installed at a time. (Logic state of the outputs can be reversed in the programming.) These plug-in cards include:

- **PAXCDS10** - Dual Relay, FORM-C, Normally open & closed
- **PAXCDS20** - Quad Relay, FORM-A, Normally open only
- **PAXCDS30** - Isolated quad sinking NPN open collector
- **PAXCDS40** - Isolated quad sourcing PNP open collector

DUAL RELAY CARD

Type: Two FORM-C relays

Isolation To Sensor & User Input Commons: 2000 Vrms for 1 min.

Contact Rating:

- One Relay Energized: 5 amp @ 120/240 VAC or 28 VDC (resistive load).
- Total current with both relays energized not to exceed 5 amps

Life Expectancy: 100 K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD RELAY CARD

Type: Four FORM-A relays

Isolation To Sensor & User Input Commons: 2300 Vrms for 1 min.

Contact Rating:

- One Relay Energized: 3 amp @ 240 VAC or 30 VDC (resistive load).
- Total current with all four relays energized not to exceed 4 amps

Life Expectancy: 100K cycles min. at full load rating. External RC snubber extends relay life for operation with inductive loads

QUAD SINKING OPEN COLLECTOR CARD

Type: Four isolated sinking NPN transistors.

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.

Contact Rating:

- 100 mA max @ Vsat = 0.7 V max. VMAX = 30 V

QUAD SOURCING OPEN COLLECTOR CARD

Type: Four isolated sourcing PNP transistors.

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.

Contact Rating:

- Internal supply: 18 VDC unregulated, 30 mA max. total
- External supply: 30 VDC max., 100 mA max. each output

ALL FOUR SETPOINT CARDS

Response Time: See Update Rates step response specification on page 3; add 6 msec (typical) for relay card

LINEAR DC OUTPUT (PAXCDL)

Either a 0(4)-20 mA or 0-10 V retransmitted linear DC output is available from the analog output plug-in card. The programmable output low and high scaling can be based on various display values. Reverse slope output is possible by reversing the scaling point positions.

- **PAXCDL10** - Retransmitted Analog Output Card

ANALOG OUTPUT CARD

Types:

- 0 to 20 mA, 4 to 20 mA or 0 to 10 VDC

Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.

Contact Rating:

- Working Voltage: 50 V. Not Isolated from all other commons.
- 10 VDC: 10 K load min., 20 mA: 500  load max.
- Powered: Self-powered

Step Response: See Update Rates step response specification on page 3.

Update time: See ADC Conversion Rate and Update Time parameter
1.0 Installing the Meter

Installation
The PAX2A meets NEMA 4X/IP65 requirements when properly installed. The unit is intended to be mounted into an enclosed panel. Prepare the panel cutout to the dimensions shown. Remove the panel latch from the unit. Slide the panel gasket over the rear of the unit to the back of the bezel. The unit should be installed fully assembled. Insert the unit into the panel cutout. While holding the unit in place, push the panel latch over the rear of the unit so that the tabs of the panel latch engage in the slots on the case. The panel latch should be engaged in the farthest forward slot possible. To achieve a proper seal, tighten the latch screws evenly until the unit is snug in the panel (Torque to approximately 7 in-lbs [79N-cm]). Do not over-tighten the screws.

Installation Environment
The unit should be installed in a location that does not exceed the operating temperature and provides good air circulation. Placing the unit near devices that generate excessive heat should be avoided. The bezel should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents. Continuous exposure to direct sunlight may accelerate the aging process of the bezel.

2.0 Setting the Jumpers

The PAX2A meter has four jumpers that must be checked and/or changed prior to applying power. The following Jumper Selection Figures show an enlargement of the jumper area.

To access the jumpers, remove the meter base from the case by firmly squeezing and pulling back on the side rear finger tabs. This should lower the latch below the case slot (which is located just in front of the finger tabs). It is recommended to release the latch on one side, then start the other side latch.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

Current Input
For current input, only one jumper must be configured to select the current range. This jumper is shared with the voltage input range. To avoid overloads, select the jumper position that is high enough to accommodate the maximum signal input level to be applied.

Note: The position of the TC/V jumper does not matter when the meter is in the current input mode.

Temperature Input
For temperature measurement the TC/V jumper must be in the TC position. For RTD sensors the RTD jumper must also be set.

Resistance Input
Three jumpers are used to configure the resistance input. The TC/V jumper must be in the V (voltage) position, and the excitation jumper must be in the 1.05 mA REF position. The voltage/resistance jumper position is determined by the input range.

Excitation Output Jumper
This jumper is used to select the excitation range for the application. If excitation is not being used, it is not necessary to check or move this jumper.

Input Range Jumpers

Voltage Input
Two jumpers are used in configuring the meter for voltage/resistance. The first jumper, TC/V, must be in the V position. The second jumper is used to select the proper voltage input range. (This jumper is also used to select the current input range.) Select a range that is high enough to accommodate the maximum signal input to avoid overloads. For proper operation, the input range selected in programming must match the jumper setting.

Resistance Input
Three jumpers are used to configure the resistance input. The TC/V jumper must be in the V (voltage) position, and the excitation jumper must be in the 1.05 mA REF position. The voltage/resistance jumper position is determined by the input range.
3.0 Installing Plug-In Cards

The plug-in cards are separately purchased optional cards that perform specific functions. These cards plug into the main circuit board of the meter. The plug-in cards have many unique functions when used with the PAX2A.

CAUTION: The plug-in card and main circuit board contain static sensitive components. Before handling the cards, discharge static charges from your body by touching a grounded bare metal object. Ideally, handle the cards at a static controlled clean workstation. Also, only handle the cards by the edges. Dirt, oil or other contaminants that may contact the cards can adversely affect circuit operation.

To Install:
1. With the meter removed from the case, locate the plug-in card connector for the card type to be installed. The types are keyed by position with different main circuit board connector locations. When installing the card, hold the meter by the rear terminals and not by the front display board.

2. Install the plug-in card by aligning the card terminals with the slot bay in the rear cover. Be sure the connector is fully engaged and the tab on the plug-in card rests in the alignment slot on the display board.

3. Slide the meter base back into the case. Be sure the rear cover latches fully into the case.

4. Apply the plug-in card label to the bottom side of the meter in the designated area. Do Not Cover the vents on the top surface of the meter. The surface of the case must be clean for the label to adhere properly.

4.0 Wiring the Meter

WIRING OVERVIEW

Electrical connections are made via screw-clamp terminals located on the back of the meter. All conductors should conform to the meter’s voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker.

When wiring the meter, compare the numbers embossed on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.3” (7.5 mm) bare lead exposed (stranded wires should be tinned with solder). Insert the lead under the correct screw-clamp terminal and tighten until the wire is secure (Pull wire to verify tightness). Each terminal can accept up to one #14 AWG (2.55 mm), or four #20 AWG (0.61 mm).

EMC INSTALLATION GUIDELINES

Although this meter is designed with a high degree of immunity to Electro-Magnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into the meter may be different for various installations. The meter becomes more immune to EMI with fewer I/O connections. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed below are some EMC guidelines for successful installation in an industrial environment.

1. The meter should be mounted in a metal enclosure, which is properly connected to protective earth.

2. Use shielded (screened) cables for all Signal and Control inputs. The shield (screen) pigtail connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness:
 a. Connect the shield only at the panel where the unit is mounted to earth ground (protective earth).

3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors feeding motors, solenoids, SCR controls, and heaters, etc. The cables should be run in metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation near a commercial radio transmitter.

4. Signal or Control cables within an enclosure should be routed as far as possible from contactors, control relays, transformers, and other noisy components.

5. In extremely high EMI environments, the use of external EMI suppression devices, such as ferrite suppression cores, is effective. Install them on Signal and Control cables as close to the unit as possible. Loop the cable through the core several times or use multiple cores on each cable for additional protection. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure. The following EMI suppression devices (or equivalent) are recommended:

 a. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is above 1 MHz.

 b. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

 c. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

 d. Use shielded cables and connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

 e. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure.

 f. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure.

 g. Use shielded cables and connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

 h. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

 i. Use shielded cables and connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

 j. Connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

 k. Install line filters on the power input cable to the unit to suppress power line interference. Install them near the power entry point of the enclosure.

 l. Use shielded cables and connect the shield to common of the meter and leave the other end of the shield unconnected and insulated from earth ground.

6. Long cable runs are more susceptible to EMI pickup than short cable runs. Therefore, keep cable runs as short as possible.

7. Switching of inductive loads produces high EMI. Use of snubbers across inductive loads suppresses EMI.

Snubber: RLC# SNUB0000.
4.1 POWER WIRING

AC Power

DC Power

4.2 VOLTAGE/RESISTANCE/CURRENT INPUT SIGNAL WIRING

IMPORTANT: Before connecting signal wires, the Input Range Jumpers and Excitation Jumper should be verified for proper position.

Voltage Signal

Process/Current Signal (external powered)

Process/Current Signal (2 wire requiring 18V excitation)

Current Signal (3 wire requiring 18 V excitation)

Voltage Signal (3 wire requiring 18 V excitation)

Resistance Signal (2 wire requiring excitation)

Terminal 3: Jumper to terminal 7
Terminal 7: Resistance
Terminal 8: Resistance
Excitation Jumper: 1.05 mA REF.
TC/V Jumper: V position
Voltage/Resistance Input Jumper: Set per input signal

Potentiometer Signal as Voltage Input (3 wire requiring excitation)

Terminal 3: High end of pot.
Terminal 7: Wiper
Terminal 8: Low end of pot.
Excitation Jumper: 2 V REF.
TC/V Jumper: V
Voltage/Resistance Input Jumper: 2 Volt
Module 1 Input Range: 2 Volt

Note: The Apply signal scaling style should be used because the signal will be in volts.

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.

4.3 TEMPERATURE INPUT SIGNAL WIRING

IMPORTANT: Before connecting signal wires, verify the TC/V Jumper is in the TC position.

Thermocouple

3-Wire RTD

2-Wire RTD

CAUTION: Sensor input common is NOT isolated from user input common. In order to preserve the safety of the meter application, the sensor input common must be suitably isolated from hazardous live earth referenced voltages; or input common must be at protective earth ground potential. If not, hazardous live voltage may be present at the User Inputs and User Input Common terminals. Appropriate considerations must then be given to the potential of the user input common with respect to earth common; and the common of the isolated plug-in cards with respect to input common.
4.4 USER INPUT WIRING

If not using User Inputs, then skip this section. Only the appropriate User Input terminal has to be wired.

Sinking Logic ($U5_R_C_T _L_0$)

When the $U5_R_C_T$ parameter is programmed to L_0, the user inputs of the meter are internally pulled up to +3.3 V with 20 KΩ resistance. The input is active when a voltage greater than 2.2 VDC is applied.

Sourcing Logic ($U5_R_C_T _H_1$)

When the $U5_R_C_T$ parameter is programmed to H_1, the user inputs of the meter are internally pulled down to 0 V with 20 KΩ resistance. The input is active when a voltage greater than 2.2 VDC is applied.

4.5 SETPOINT (ALARMS) WIRING

4.6 SERIAL COMMUNICATION WIRING

4.7 ANALOG OUTPUT WIRING

See appropriate plug-in card bulletin for wiring details.

5.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

The PAX2A display consists of a large, 6-digit upper display referred to as Line 1 and a smaller 9-digit lower display referred to as Line 2. Line 1 can be configured to show one of several values, including the main input reading, min, max, setpoints or total values. Line 2 can be used to display several selectable values including; input value, min, max, total, list, setpoint values, and other values. For these values the mnemonics is shown in the left most digits of Line 2. To the right of Line 1 is a Programmable Units Display. This display consists of 3 programmable digits that are user defined as mnemonics for Line 1.
PAX2A DISPLAY LOOPS

The PAX2A offers three display loops to allow users quick access to needed information. These display loops are available when the meter is in the normal display mode. By pressing the D key, the user can view parameters such as the Total, Min, Max or the Input in the Main Display Loop. Display selections are fully programmable and are viewed on the 9 digit line of the meter.

Pressing the P key with no security code (CODE 0) will put the meter directly into the programming mode. When a security code is programmed (Code 1-250), pressing the P key will allow access to the Parameter Display Loop. This loop is where the parameters like setpoint values are normally put for general public access. Parameters in this loop can only be viewed/changed if enabled in the meter programming. After all the parameters in the Parameter Display Loop are viewed, an additional press of the P key will bring up the security code (CODE 0). Access the Hidden Parameter Display Loop by entering the selected security code. In this loop displayed parameters can be changed.

Combining the two parameter loops provides an area for parameters that require general access and/or protected or secure access depending on your application needs.

During programming of the meter you will need to select if a value is to be displayed or not. If the value is not required, select the lock mode (LOC). If you decide to display the value, you will need to assign it to a loop; D for the Main Display Loop, P for the Parameter Display Loop, and H for the Hidden Display Loop. In the case of the parameters, such as the setpoint values you will also need to decide if the value can only be read (rEn) or entered (EnEnt). The [+] and [-] key will increment or decrement the value when the edit mode is active.

After the change, press the P key to save and move to the next value. Any values placed in the Hidden Parameter Loop can be changed as they are protected by the security code. While in the parameter display and hidden parameter loops, pressing the D key will return the meter to the main display.

There are selections in the programming that allow for the values to be reset. When the P key is pushed on a resettable display, the unit will display the value mnemonic and “NO” (if Line 2 value was set for “d-Ent” in “3-dISPLY”). Pressing the [+] and [-] keys will toggle between “NO” and “YES”. Pressing the P key with “YES” displayed will cause the reset action to be performed.

The P, Parameter key is used to scroll among the programmed Line 2 parameter values when at the main display or to step through the parameter loop and hidden parameter loop. It is used as the enter key when the meter is in the programming mode.

Numerical Value Entry

If the parameter is programmed for enter (EnEnt), the [+] and [-] keys are used to change the parameter values in any of the display loops.

The [+] and [-] keys will increment or decrement the parameter value. When the arrow key is pressed and held, the value automatically scrolls. The longer the arrow key is held the faster the value scrolls.

For large value changes, press and hold the [+] or [-] key. While holding that key, momentarily press the D key and the value scrolls by 1000’s as the arrow key is held. Releasing the arrow key removes the 1000’s scroll feature. The arrow keys can then be used to make small value changes as described above.
6.0 PROGRAMMING THE PAX2A

Signal Input Parameters
User Input/Function Key Parameters
Display/Program Lockout Parameters
Secondary Function Parameters
Totalizer Parameters
Setpoint Parameters
Serial Comms Parameters
Analog Output Parameters
Factory Service Parameters
Module 1 - Input Setup Parameters (1 Input)

Parameter Menu

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Range</td>
<td>250°C, 25°C, 1000°C, 0°C, -5°C, -6°C, 427°F, 4°C, 305°F</td>
</tr>
<tr>
<td>Temperature Scale</td>
<td>Of, °C</td>
</tr>
<tr>
<td>Ice Point Compensation</td>
<td>On, Off</td>
</tr>
<tr>
<td>ADC Rate</td>
<td>5, 10, 20, 40, 80, 160</td>
</tr>
<tr>
<td>Decimal Resolution</td>
<td>0 to 0.0000 (curr/volt), 0 to 0.0 (temp)</td>
</tr>
<tr>
<td>Display Offset</td>
<td>-199999 to 999999</td>
</tr>
<tr>
<td>Filter Band</td>
<td>0.0 to 250 display units</td>
</tr>
</tbody>
</table>

Input Update Rate (/Sec)

Select the ADC conversion rate (conversions per second). Temperature inputs can not be set higher than 20 updates per second. The selection does not affect the display update rate, however it does affect setpoint and analog output response time. The default factory setting of 5 is recommended for most applications. Selecting a fast update rate may cause the display to appear very unstable.

Decimal Resolution (Display Units)

Select desired display resolution. The available selections are dependent on the Input Range selected (\(r\text{-Range} \)).

Display Rounding

Rounding selections other than one, cause the Input Display to ‘round’ to the nearest rounding increment selected (ie. rounding of ‘5’ causes 122 to round to 120 and 123 to round to 125). Rounding starts at the least significant digit of the Input Display. Remaining parameter entries (scaling point values, setpoint values, etc.) are not automatically adjusted to this display rounding selection.

Filter Band

The digital filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the digital filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of ‘0’ keeps the digital filter permanently engaged.

Scaling Points

For linear processes, only 2 scaling points are necessary. It is recommended.
that the 2 scaling points be at opposite ends of the input signal being applied. The
does not have to be the same limit. Display scaling will be linear
between and continue past the entered points up to the limits of the Input Signal
Jumper position. Each scaling point has a coordinate-pair of Input Value (INPUt n) and an associated desired Display Value (dSPLY n).

Nonlinear - Scaling Points (Greater than 2)

For non-linear processes, up to 16 scaling points may be used to provide a
piece-wise linear approximation. (The greater the number of scaling points used,
the greater the conformity accuracy.) The Input Display will be linear between
scaling points that are sequential in program order. Each scaling point has a
coordinate-pair of Input Value (INPUt n) and an associated desired Display Value
(dSPLY n). Data from tables or equations, or empirical data could be used to
derive the required number of segments and data values for the coordinate pairs.
In the Crimson software, several linearization equations are available.

SCALING STYLE

This parameter does not apply for thermocouple or RTD input ranges.

If Input Values and corresponding Display Values are known, the Key-in
(KEY) scaling style can be used. This allows scaling without the presence of the
input signal. If Input Values have to be derived from the actual input signal
source or simulator, the Apply (APPLY) scaling style must be used.

INPUT VALUE FOR SCALING POINT 1

For Key-in (KEY), enter the known first Input Value by using the \(\text{F1} \) or \(\text{F2} \)
arrow keys. (The input Range selection sets up the decimal location for the Input
Value). For Apply (APPLY), the existing programmed value will appear. If this
is acceptable, press the \(\text{P} \) key to save and continue to the next parameter.
To update/program this value, apply the input signal that corresponds to Scaling
Point 1, press \(\text{F1} \) or \(\text{F2} \) and the actual signal value will be displayed. Then press
the \(\text{P} \) key to accept this value and continue to the next parameter.

DISPLAY VALUE FOR SCALING POINT 1

Enter the first coordinating Display Value by using the arrow keys. This is the
same style for KEY and APPLY scaling styles. The decimal point follows the selection.

INPUT VALUE FOR SCALING POINT 2

For Key-in (KEY), enter the known second Input Value by using the \(\text{F1} \) or \(\text{F2} \)
arrow keys. For Apply (APPLY), the existing programmed value will appear. If this
is acceptable, press the \(\text{P} \) key to save and continue to the next parameter. To
update/program this value, apply the input signal that corresponds to Scaling
Point 2, press \(\text{F1} \) or \(\text{F2} \) and the actual signal value will be displayed. Then press
the \(\text{P} \) key to accept this value and continue to the next parameter. (Follow the same
procedure if using more than 2 scaling points.)

ENABLE SCALE LIST

When enabled, a second list of scaling points is active in the selected
parameter list for List A and List B.

MODULE 2 - USER INPUT/ FUNCTION KEY PARAMETERS (2-FUNCT)

The two user inputs are individually programmable to perform specific meter
control functions. While in the Display Mode or Program Mode, the function is
executed the instant the user input transitions to the active state. The front panel
function keys, \(\text{F1} \) and \(\text{F2} \), are also individually programmable to perform
specific meter control functions. While in the Display Mode, the primary
function is executed the instant the key is pressed. Holding the function key for
three seconds executes a secondary function. It is possible to program a
secondary function without a primary function.

In most cases, if more than one user input and/or function key is programmed
for the same function, the maintained (level trigger) actions will be performed
while at least one of those user inputs or function keys are activated. The
momentary (edge trigger) actions will be performed every time any of those user
inputs or function keys transition to the active state.

Note: In the following explanations, not all selections are available for both
user inputs and front panel function keys. Displays are shown with each
selection. Those selections showing both displays are available for both. If a
display is not shown, it is not available for that selection. \(\text{USER}-\text{n} \) will represent
both user inputs. \(\text{Fn} \) will represent both function keys and second function keys.

USER INPUT ACTIVE STATE

Select the desired active state for the User Inputs. Select \(\text{Lo} \) for sink input, active low. Select \(\text{Hi} \) for source input, active high.

NO FUNCTION

No function is performed if activated. This is the factory setting for all user
inputs and function keys.
PROGRAMMING MODE LOCK-OUT

Programming Mode is locked-out, as long as activated (maintained action). A security code can be configured to allow programming access during lock-out.

ZERO (TARE) DISPLAY

The Zero (Tare) Display provides a way to zero the Input Display value at various input levels, causing future Display readings to be offset. This function is useful in weighing applications where the container or material on the scale should not be included in the next measurement value. When activated (momentary action), \(rESEt \) flashes and the Display is set to zero. At the same time, the Display value (that was on the display before the Zero Display) is subtracted from the Display Offset Value and is automatically stored as the new Display Offset Value. If another Zero (tare) Display is performed, the display will again change to zero and the Display reading will shift accordingly.

RELATIVE/ABSOLUTE DISPLAY

This function will switch the Input Display between Relative and Absolute. The Relative is a net value that includes the Display Offset Value. Regardless of the display selected, all meter functions continue to operate based on relative values. The Absolute is a gross value (based on Module 1 DSP and INP entries) without the Display Offset Value. The Absolute display is selected as long as the user input is activated (maintained action) or at the transition of the function key (momentary action). When the user input is released, or the function key is pressed again, the input display switches back to Relative display (\(AbS \)) or (\(rEli \)) is momentarily displayed at transition to indicate which display is active.

HOLD DISPLAY

The shown display is held but all other meter functions continue as long as activated (maintained action).

HOLD ALL FUNCTIONS

The meter disables processing the input, holds all display contents, and locks the state of all outputs as long as activated (maintained action). The serial port continues data transfer.

SYNCHRONIZE METER READING

The meter suspends all functions as long as activated (maintained action). When the user input is released, the meter synchronizes the restart of the A/D with other processes or timing events.

STORE BATCH READING IN TOTALIZER

The Input Display value is one time added (batched) to the Totalizer at transition to activate (momentary action) and Line 2 flashes \(bAtCh \). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. When this function is selected, the normal operation of the Totalizer is overridden.

SELECT TOTALIZER DISPLAY

The Totalizer display appears on Line 2 as long as activated (maintained action). When the user input is released, the previously selected display is returned. The \(D \) or \(P \) keys override and disable the active user input. The Totalizer continues to function including associated outputs independent of being displayed.

RESET TOTALIZER

When activated (momentary action), \(rESEt \) flashes and the Totalizer resets to zero. The Totalizer then continues to operate as it is configured. This selection functions independent of the selected display.

RESET AND ENABLE TOTALIZER

When activated (momentary action), \(rESEt \) flashes and the Totalizer resets to zero. The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

ENABLE TOTALIZER

The Totalizer continues to operate while active (maintained action). When the user input is released, the Totalizer stops and holds its value. This selection functions independent of the selected display.

SELECT MAXIMUM DISPLAY

The Maximum display appears on Line 2 as long as activated (maintained action). When the user input is released, the previously selected display is returned. The \(D \) or \(P \) keys override and disable the active user input. The Maximum continues to function independent of being displayed.

RESET MAXIMUM DISPLAY

When activated (momentary action), \(rESEt \) flashes and the Maximum resets to the present Input Display value. The Maximum function then continues from that value. This selection functions independent of the selected display.

SELECT MINIMUM DISPLAY

The Minimum display appears on Line 2 as long as activated (maintained action). When the user input is released, the previously selected display is returned. The \(D \) or \(P \) keys override and disable the active user input. The Minimum continues to function independent of being displayed.
RESET MINIMUM DISPLAY

![RESET MINIMUM DISPLAY](image)

When activated (momentary action), \(\text{RESET} \) flashes and the Minimum resets to the present Input Display value. The Minimum function then continues from that value. This selection functions independent of the selected display.

RESET MAXIMUM AND MINIMUM DISPLAY

![RESET MAXIMUM AND MINIMUM DISPLAY](image)

When activated (momentary action), \(\text{RESET} \) flashes and the Maximum and Minimum readings are set to the present Input Display value. The Maximum and Minimum function then continues from that value. This selection functions independent of the selected display.

DISPLAY SELECT

![DISPLAY SELECT](image)

When activated (momentary action), Line 2 advances to the next display that is not locked out from the Display Mode.

ADJUST DISPLAY INTENSITY

![ADJUST DISPLAY INTENSITY](image)

When activated (momentary action), the display intensity changes to the next intensity level.

CHANGE DISPLAY COLOR

![CHANGE DISPLAY COLOR](image)

When activated (momentary action), Line 1 will change color.

SELECT PARAMETER LIST

![SELECT PARAMETER LIST](image)

Two lists of input scaling points and setpoint values (including band and deviation) are available. The two lists are named \(\text{LIST-A} \) and \(\text{LIST-b} \). If a user input is used to select the list then \(\text{LIST-A} \) is selected when the user input is not active and \(\text{LIST-b} \) is selected when the user input is active (maintained action). If a front panel key is used to select the list then the list will toggle for each key press (momentary action). The display will only indicate which list is active when the list is changed. To program the values for \(\text{LIST-A} \) and \(\text{LIST-b} \), first complete the programming of all the parameters. Exit programming and switch to the other list. Re-enter programming and enter the desired values for the input scaling points, setpoints, band, and deviation if used.

SETPOINT SELECTIONS

The following selections are functional only with a Setpoint plug-in card installed.

- \(r-1 \) - Reset Setpoint 1 (Alarm 1)
- \(r-2 \) - Reset Setpoint 2 (Alarm 2)
- \(r-3 \) - Reset Setpoint 3 (Alarm 3)
- \(r-4 \) - Reset Setpoint 4 (Alarm 4)
- \(r-34 \) - Reset Setpoint 3 & 4 (Alarm 3 & 4)
- \(r-234 \) - Reset Setpoint 2, 3 & 4 (Alarm 2, 3 & 4)
- \(r-\text{ALL} \) - Reset All Setpoints (Alarms 1-4)

PRINT REQUEST

![PRINT REQUEST](image)

The meter issues a block print through the serial port when activated, and the serial type is set to \(\text{rLC} \). The data transmitted during a print request and the serial type is programmed in Module 7. If the user input is still active after the transmission is complete (about 100 msec), an additional transmission occurs. As long as the user input is held active, continuous transmissions occur.
Module 3 is the programming of the Main Display Loop, Parameter Display Loop, Hidden Parameter Loop, and Full Programming lock-out. The large upper display line value is configured by the "line" parameter. The Units mnemonic can be used to assign a custom display mnemonic to the upper display value. When in the Main Display Loop, the available Line 2 displays (items configured for d-Ent or d-Ent) can be consecutively read on lower display by repeatedly pressing the D key. A left justified character mnemonic indicates which parameter value is being shown on the lower display. When in the Main Display Loop the User keys (P and P-Ent) function as programmed in Module 2.

The Parameter display loop items can be accessed by pressing the P key. To edit a main display line item, that is configured as d-Ent, the P key is pushed and the unit enters a parameter edit mode in which the P and P-Ent key increments or decrements the value.

Full Programming Mode permits all parameters to be viewed and modified. This Programming Mode can be locked with a security code and/or user input.

LINE 1 DISPLAY COLOR

Enter the desired Display Line 1 and programmable Units Display color.

DISPLAY INTENSITY LEVEL

Enter the desired Display Intensity Level (0-4) by using the arrow keys. The display will actively dim or brighten as the levels are changed. This parameter also appears in the Parameter Display Loop when enabled.

DISPLAY CONTRAST LEVEL

Enter the desired Display Contrast Level (0-15) by using the arrow keys. The display contrast / viewing angle will actively move up or down as the levels are changed. This parameter also appears in the Parameter Display Loop when enabled.

LINE 1 DISPLAY

Select the value to be assigned to the primary or top line of the meter display.

LINE 2 INPUT ACCESS

When configured for d-Ent, the Input value can be reset (tare) using a front keypad sequence. To reset (tare), push the P key while viewing the Input value on Line 2. The display will show rEnt NO. Press the P-Ent key to select YES and then press P key. The display will indicate rEntEEnt and then advance to Parameter Display.

LINE 2 TOTAL ACCESS

When configured for d-Ent, the Total value can be reset using a front keypad sequence. To reset, push the P key while viewing the Total value on Line 2. The display will show rEnt NO. Press the P-Ent key to select YES and then press P key. The display will indicate rEntEEnt and then advance to Parameter Display.

UNITS MNEMONIC

This parameter allows programming of the display mnemonics characters. Three individual characters may be selected from a preprogrammed list. The list includes:

H: A B C D E F G H I J K L N O P Q R S T U V W X Y Z 0 1 2 blank

LINE 2 MAIN, SECONDARY & HIDDEN DISPLAY ACCESSIBLE ITEMS

Select YES to program the display Line 2 accessible values. The default setting of NO bypasses the programming of these values to shorten the module. All of the individual Line 2 settings are retained.
Line 2 MAX Access

When configured for \(d \cdot E \cdot n \), the Max Display value can be reset using a front keypad sequence. To reset, push the \(P \) key while viewing the Hi value on Line 2. The display will show \(L O C \) NO. Press the \(P \) key to select YES and then press \(P \) key. The display will indicate \(r \cdot E \cdot S \cdot E \) and then advance to Parameter Display.

Line 2 MIN Access

When configured for \(d \cdot E \cdot n \), the Min Display value can be reset using a front keypad sequence. To reset, push the \(P \) key while viewing the Lo value on Line 2. The display will show \(L O C \) NO. Press the \(P \) key to select YES and then press \(P \) key. The display will indicate \(r \cdot E \cdot S \cdot E \) and then advance to Parameter Display.

Line 2 Parameter List A/B Access

When configured for \(d \cdot E \cdot n \), the Parameter list can be selected using a front keypad sequence. To select, push the \(P \) key while viewing \(L I S T \) \(L n 2 \). “x” will begin to flash, press the \(F U N C t \) key to select “A” or “B” and then press \(P \) key. The selected Parameter List will become active and the display will advance to Parameter Display. See User Functions “Select Parameter List” for a description of the list function. The Line 2 Parameter List provides a means of setting or viewing the active parameter list.

Line 2 Setpoints Access

When configured for \(d \cdot E \cdot n \), the \(P \) key must be pressed to select the item for change before the \(d \) and \(2 \) keys will increment or decrement the value.

Line 2 Band/Deviation Access

When configured for \(d \cdot E \cdot n \), the \(P \) key must be pressed to select the item for change before the \(d \) and \(2 \) keys will increment or decrement the value.

Line 1 Display Color Access

When configured for \(P \cdot E \cdot n \), Line 1 Color can be selected in the Parameter Display by using the \(d \) and \(2 \) keys while viewing \(C o l o r \).

Display Intensity Access

When configured for \(P \cdot E \cdot n \), the display intensity can be selected in the Parameter Display by using the \(d \) and \(2 \) keys while viewing \(d \cdot L E U \).

Display Contrast Access

When configured for \(P \cdot E \cdot n \), the display contrast can be selected in the Parameter Display by using the \(d \) and \(2 \) keys while viewing \(d \cdot C o n t \).
PARAMETER MENU

MAX Capture Assignment
MAX Capture Time
MIN Capture Assignment
MIN Capture Time
Display Update Rate

MAX CAPTURE ASSIGNMENT

HI-AS \[\text{rEL} \] Abs

Select the desired parameter that will be assigned to the Max Capture.

MAX CAPTURE DELAY TIME

HI-\[\text{t} \] 1.0 SEC

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN CAPTURE ASSIGNMENT

LO-AS \[\text{rEL} \] Abs

Select the desired parameter that will be assigned to the Min Capture.

MIN CAPTURE TIME

LO-\[\text{t} \] 1.0 to 3275.0 seconds

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

DISPLAY UPDATE RATE

dSP-\[\text{t} \] 1 2 5 10 20 updates/second

This parameter configures the display update rate. It does not affect the response time of the setpoint output or analog output option cards.
The totalizer accumulates (integrates) the Input Display value using one of two modes. The first is using a time base. This can be used to compute a temperature integration, useful in curing and sterilization applications. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

TOTALIZER DECIMAL POINT

The Input Display Decimal Point (\(d\text{ECPN}\)) does not apply.

For most applications, this matches the Input Display Decimal Point \(d\text{ECPN}\). If a different location is desired, refer to Totalizer Scale Factor.

TOTALIZER TIME BASE

The Totalizer Time Base and scale factor are overridden when a user input or function key is programmed for Batch (one time add on demand). This can be used to provide a readout of temperature integration, useful in curing and sterilization operations. If the Totalizer is not needed, its display can be locked-out and this module can be skipped during programming.

This is the time base used in Totalizer accumulations. If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER SCALE FACTOR

The Totalizer Scale Factor can be used to scale the Totalizer to engineering units as the Input Display. In this case, the Totalizer Scale Factor is 1.000. The Totalizer Scale Factor can be used to scale the Totalizer to a value that is different than the Input Display. Common possibilities are:

1. Changing decimal point location (example tenths to whole)
2. Average over a controlled time frame.

Details on calculating the scale factor are shown later. For most applications, the Totalizer reflects the same decimal point location and engineering units as the Input Display. If the Totalizer Scale Factor is 1.000, the Totalizer Scale Factor can be used to scale the Totalizer to a value that is different than the Input Display. Common possibilities are:

- Changing decimal point location (example tenths to whole)
- Average over a controlled time frame.

If the Totalizer is being accumulated through a user input programmed for Batch, then this parameter does not apply.

TOTALIZER LOW CUT VALUE

A low cut value disables Totalizer when the Input Display value falls below the value programmed.

TOTALIZER POWER UP RESET

The Totalizer can be reset to zero on each meter power-up by setting this parameter to \textit{YES}.

TOTALIZER BATCHING

The Totalizer Time Base and scale factor are overridden when a user input or function key is programmed for store batch (\(b\text{At}\)). In this mode, when the user input or function key is activated, the Input Display reading is one time added to the Totalizer (batch). The Totalizer retains a running sum of each batch operation until the Totalizer is reset. This is useful in weighing operations, when the value to be added is not based on time but after a filling event.

TOTALIZER USING TIME BASE

Totalizer accumulates as defined by:

\[
\text{Input Display} \times \text{Totalizer Scale Factor} = \text{Totalizer Time Base}
\]

Where:

- Input Display - the present input reading
- Totalizer Scale Factor - 0.001 to 65.000
- Totalizer Time Base - (the division factor of \(t\text{bASE}\))

Example: The input reading is at a constant rate of 10.0 gallons per minute. The Totalizer is used to determine how many gallons in tenths has flowed. Because the Input Display and Totalizer are both in tenths of gallons, the Totalizer Scale Factor is 1. With gallons per minute, the Totalizer Time Base is minutes (60). By placing these values in the equation, the Totalizer will accumulate every second as follows:

\[
10.0 \times 1.000 = 0.1667 \text{ gallon accumulates each second}
\]

This results in:

- 10.0 gallons accumulates each minute
- 600.0 gallons accumulates each hour

TOTALIZER SCALE FACTOR CALCULATION EXAMPLES

1. When changing the Totalizer Decimal Point \(d\text{ECPN}\) location from the Input Display Decimal Point \(d\text{ECPN}\), the required Totalizer Scale Factor is multiplied by a power of ten.

Example:

<table>
<thead>
<tr>
<th>Input (d\text{ECPN})</th>
<th>Scale Factor</th>
<th>Input (d\text{ECPN})</th>
<th>Scale Factor</th>
<th>Input (d\text{ECPN})</th>
<th>Scale Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.0)</td>
<td>10</td>
<td>(0.0)</td>
<td>10</td>
<td>(0.000)</td>
<td>10</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.000</td>
<td>1</td>
</tr>
<tr>
<td>x10</td>
<td>0.1</td>
<td>x10</td>
<td>0.1</td>
<td>x100</td>
<td>0.01</td>
</tr>
<tr>
<td>x100</td>
<td>0.01</td>
<td>x100</td>
<td>0.01</td>
<td>x1000</td>
<td>0.001</td>
</tr>
<tr>
<td>x1000</td>
<td>0.001</td>
<td>x1000</td>
<td>0.001</td>
<td>x10000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

2. To obtain an average reading within a controlled time frame, the selected Totalizer Time Base is divided by the given time period expressed in the same timing units.

Example: Average temperature per hour in a 4 hour period, the scale factor would be 0.250. To achieve a controlled time frame, connect an external timer to a user input programmed for \(r\text{tAt}\). The timer will control the start (reset) and the stopping (hold) of the totalizer.
MODULE 6 - SETPOINT OUTPUT PARAMETERS (6-SETPNT)

PARAMETER MENU

SETPOINT SELECT

Enter the setpoint (alarm output) to be programmed. The "n" in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to NO. Repeat step for each setpoint to be programmed. The NO chosen at SELECT, will return to Pro NO. The number of setpoints available is setpoint output card dependent.

SETPOINT ASSIGNMENT

Selects the meter value to be used to trigger the Setpoint Alarm. The rel setting will cause the setpoint to trigger off of the relative (net) input value. The absolute input value that includes the Display Offset Value. The abs setting will cause the setpoint to trigger off of the absolute (gross) input value. The absolute input value is based on Module 1 Display and Input entries.

Setpoint Alarm Figures

With reverse output logic rev, the below alarm states are opposite.

- Absolute High Acting (Balanced Hys) = Ab-HI
- Absolute Low Acting (Unbalanced Hys) = Ab-LO
- Deviation High Acting (Dev > 0) = dE-HI
- Deviation Low Acting (Dev < 0) = dE-LO
- Band Outside Acting = bNd
- Band Inside Acting = bNdI
- Lower 6 digits of 9 digit Totalizer, with unbalanced hysteresis = totLo
- Upper 6 digits of 9 digit Totalizer, with unbalanced hysteresis = totHi

Programming information contained in this manual supersedes all programming information included with the PAXCDS card.

This is also for Totalizer alarms: totLo, totHi.
SETPOINT VALUE

-199999 to 999999

Enter desired setpoint alarm value. Setpoint values can also be entered in the Display Mode during Program Lockout when the setpoint is programmed as E5E in Parameter Module 3. The decimal point position is determined by the Setpoint Assignment value.

BAND/DEVIATION VALUE

-199999 to 999999

This parameter is only available in band and deviation setpoint actions. Enter desired setpoint band or deviation value. When the Setpoint Action is programmed for Band, this value can only be a positive value.

HYSTERESIS VALUE

1 to 65000

Enter desired hysteresis value. See Setpoint Alarm Figures for visual explanation of how setpoint alarm actions (balanced and unbalanced) are affected by the hysteresis. When the setpoint is a control output, usually balanced hysteresis is used. For alarm applications, usually unbalanced hysteresis is used. For unbalanced hysteresis modes, the hysteresis functions on the low side for high acting setpoints and functions on the high side for low acting setpoints. Note: Hysteresis eliminates output chatter at the switch point, while time delay can be used to prevent false triggering during process transient events.

ON TIME DELAY

0.0 to 32750 seconds

Enter the time value in seconds that the alarm is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is rEU, this becomes off time delay. Any time accumulated at power-off resets during power-up.

OFF TIME DELAY

0.0 to 32750 seconds

Enter the time value in seconds that the alarm is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the alarm status per the response time listed in the Specifications. When the output logic is rEU, this becomes on time delay. Any time accumulated at power-off resets during power-up.

OUTPUT LOGIC

nor rEU

Enter the output logic of the alarm output. The nor logic leaves the output operation as normal. The rEU logic reverses the output logic. In rEU, the alarm states in the Setpoint Alarm Figures are reversed.

RESET ACTION

_auto Latch1 Latch2

Enter the reset action of the alarm output. _Auto = Automatic action; This action allows the alarm output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Alarm Figures. The “on” alarm may be manually reset (off) immediately by a front panel function key or user input. The alarm remains reset off until the trigger point is crossed again. _Latch1 = Latch with immediate reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the corresponding “on” alarm output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.) _Latch2 = Latch with delay reset action; This action latches the alarm output on at the trigger point per the Setpoint Action shown in Setpoint Alarm Figures. Latch means that the alarm output can only be turned off by front panel function key or user input manual reset, serial reset command or meter power cycle. When the user input or function key is activated (momentary or maintained), the meter delays the event until the corresponding “on” alarm output crosses the trigger off point. (Previously latched alarms are off if power up Display Value is lower than setpoint value. During a power cycle, the meter erases a previous Latch 2 reset if it is not activated at power up.)

LINE 1 CHANGE COLOR

The parameter allows the Line 1 Display to change color, or alternate between two colors, when the alarm is activated. When multiple alarms are programmed to change color, the highest numbered active alarm (S4-S1) determines the display color. The NO CH6 selection will maintain the color displayed prior to the alarm activation. The LINE 1 selection sets the display to the Line 1 Display Color (Color), programmed in Module 3.

PROBE BURN-OUT ACTION

OFF ON

Enter the probe burn-out action. In the event of a temperature probe failure (TC open; RTD open or short), the output can be programmed to be on or off.
MODULE 7 - SERIAL COMMUNICATIONS PARAMETERS (7-SErIAL)

PARAMETER MENU

<table>
<thead>
<tr>
<th>USB Setup</th>
<th>Type</th>
<th>Baud Rate</th>
<th>Data Bit</th>
<th>Parity Bit</th>
<th>Meter Address</th>
<th>Transmit Delay</th>
<th>Abbreviated Printing</th>
<th>Print Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONFIG</td>
<td>MBASC</td>
<td>38400</td>
<td>8</td>
<td>NO</td>
<td>247</td>
<td>0.010</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

Programming information contained in this manual supercedes all programming information included with the PAXCDC card.

USB SETUP

CONFIG – Configures USB with settings required to operate with Crimson configuration software. This will automatically internally configure the PAX2A to use ModBus RTU protocol, 38400 baud, 8 bits, and unit address of 247 when a USB cable is attached to PAX2A and PC. The serial port settings shown in "7-SErIAL" (this module) will not change, or show this.

Port – Configures USB to utilize serial settings and protocol as configured in "7-SErIAL" (this module).

COMMUNICATIONS TYPE

TYPE

- **MBASC** - ModBus ASCII
- **rLC** - RLC Protocol (ASCII)
- **MBrtU** - ModBus RTU

Select the desired communications protocol. Modbus is preferred as it provides access to all meter values and parameters. Since the Modbus protocol is included within the PAX2A, the PAX Modbus option card, PAXCDC4, should not be used. The PAXCDC1 (RS485), or PAXCDC2 (RS232) card should be used instead.

BAUD RATE

BAUD

- 1200
- 4800
- 9600
- 19200
- 2400
- 38400

Set the baud rate to match the other serial communications equipment on the serial link. Normally, the baud rate is set to the highest value that all the serial equipment are capable of transmitting and receiving.

DATA BIT

dALR

- 1
- 8

Select either 7 or 8 bit data word lengths. Set the word length to match the other serial communications equipment on the serial link.

PARITY BIT

PArity

- NO
- EVEN
- Odd

Set the parity bit to match that of the other serial communications equipment on the serial link. The meter ignores the parity when receiving data and sets the parity bit for outgoing data. If no parity is selected with 7 bit word length, an additional stop bit is used to force the frame size to 10 bits.

METER UNIT ADDRESS

Addr

- 0 to 99 - RLC Protocol
- 1 to 247 - ModBus

Select a Unit Address that does not match an address number of any other equipment on the serial link.

TRANSMIT DELAY

dELAY

- 0.000 to 0.250 seconds

Following a transmit value ("*" terminator) or Modbus command, the PAX2A will wait this minimum amount of time in seconds before issuing a serial response.

ABBREVIATED PRINTING

Abru

- NO
- YES

Select YES for full print or Command T transmissions (meter address, mnemonics and parameter data) or NO for abbreviated print transmissions (parameter data only). This will affect all the parameters selected in the print options. If the meter address is 00, it will not be sent during a full transmission.

PRINT OPTIONS

OPE

- NO
- YES

YES - Enters the sub-menu to select the meter parameters to appear during a print request. For each parameter in the sub-menu, select YES for that parameter information to be sent during a print request or NO for that parameter information not to be sent. A print request is sometimes referred to as a block print because more than one parameter information (meter address, mnemonics and parameter data) can be sent to a printer or computer as a block.

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>DESCRIPTION</th>
<th>FACTORY SETTING</th>
<th>MNEMONIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>Signal Input</td>
<td>YES</td>
<td>INP</td>
</tr>
<tr>
<td>TOT</td>
<td>Total Value</td>
<td>NO</td>
<td>TOT</td>
</tr>
<tr>
<td>MAX, MIN</td>
<td>Max & Min</td>
<td>NO</td>
<td>MAX, MIN</td>
</tr>
<tr>
<td>SP1-SP4</td>
<td>Setpoint Values</td>
<td>NO</td>
<td>SP1-SP4</td>
</tr>
</tbody>
</table>
SERIAL COMMUNICATIONS

The PAX2A supports serial communications using the optional serial communication cards or via the USB programming port located on the side of the unit. When USB is being used (connected), the serial communication card is disabled. When using the standard RS232 and RS485 Pax option cards, the PAX2A supports both the RLC protocol and also supports ModBus communications. The Pax ModBus option card should not be used with the PAX2A, as the PAX2A internal ModBus protocol supports complete unit configuration, and is much more responsive.

USB

The USB programming port is primarily intended to be used to configure the PAX2A with the Crimson programming software. It can also, be used as a virtual serial communications port following installation of the PAX2A USB drivers that are supplied with the Crimson software. When the USB port is being used, i.e. the USB cable is connected between PAX2A and PC, all serial communications with the serial option card (if used) is disabled.

USB Cable type required: USB A to Mini-B (not supplied)

PAX2A CONFIGURATION USING CRIMSON AND USB
1. Install Crimson software.
2. Supply power to PAX2A
3. Insure “USB” parameter in module 7-5SER R, is set to “CONF 16” (factory default setting).
4. Attach USB A – MiniB cable between PC and PAX2A
5. Create a new (File, New) or open an existing PAX2A database within Crimson.
6. Configure Crimson 2 Link, Options to the serial port the communication cable is attached (in Step 4).

SERIAL MODBUS COMMUNICATIONS

Modbus Communications requires that the Serial Communication Type Parameter (TYPE) be set to “MB Rtu” or “MB ASCII”.

PAX2A CONFIGURATION USING CRIMSON AND SERIAL COMMUNICATIONS CARD
1. Install Crimson software.
2. Install RS232 or RS485 card and connect communications cable from PAX2A to PC.
3. Supply power to PAX2A
4. Configure serial parameters in 7-5SER R to MB Rtu, 38,400 baud, address 247.
5. Create a new (File, New) or open an existing PAX2A database within Crimson.
6. Configure Crimson 2 Link, Options to the serial port the communication cable is attached (in step 2).

SUPPORTED FUNCTION CODES

FC03: Read Holding Registers
1. Up to 32 registers can be requested at one time.
2. HEX <8000> is returned for non-used registers.

FC04: Read Input Registers
1. Up to 32 registers can be requested at one time.
2. Block starting point can not exceed register boundaries.
3. HEX <8000> is returned in registers beyond the boundaries.
4. Input registers are a mirror of Holding registers.

FC06: Preset Single Register
1. HEX <8001> is echoed back when attempting to write to a read only register.
2. If the write value exceeds its high or low limit. It is also returned in the response.

FC16: Preset Multiple Registers
1. No response is given with an attempt to write to more than 32 registers at a time.
2. Block starting point cannot exceed the read and write boundaries (40001-41280).
3. If a multiple write includes read only registers, then only the write registers will change.
4. If the write value exceeds the register limit (see Register Table), then that register value changes to its high or low limit.

FC08: Diagnostics
The following is sent upon FC08 request:
Module Address, 08 (FC code), 04 (byte count), “Total Comms” 2 byte count, “Total Good Comms” 2 byte count, checksum of the string “Total Comms” is the total number of messages received that were addressed to the PAX2. “Total Good Comms” is the total messages received by the PAX2A with good address, parity and checksum. Both counters are reset to 0 upon response to FC08 and at power-up.

FC17: Report Slave ID
The following is sent upon FC17 request:
RLC-PAX2A ab<0100h><20h><20h><10h>
 a = SP Card, “0”-No SP, “2” or “4” SP
 b = Linear Card “0” = None, “1” = Yes
 <0100> Software Version Number (1.00)
 <20h>Max Register Reads (32)
 <20h>Max Register Writes (32)
 <10h> Number Guid/Scratch Pad Regs (16)

SUPPORTED EXCEPTION CODES

01: Illegal Function
 Issued whenever the requested function is not implemented in the meter.

02: Illegal Data Address
 Issued whenever an attempt is made to access a single register that does not exist (outside the implemented space) or to access a block of registers that falls completely outside the implemented space.

03: Illegal Data Value
 Issued when an attempt is made to read or write more registers than the meter can handle in one request.

07: Negative Acknowledge
 Issued when a write to a register is attempted with an invalid string length.
PAX2A MODBUS REGISTER TABLE

The below limits are shown as Integers or HEX < > values. Read and write functions can be performed in either Integers or Hex as long as the conversion was done correctly. Negative numbers are represented by two’s complement.

Note 1: The PAX2A should not be powered down while parameters are being changed. Doing so may corrupt the non-volatile memory resulting in checksum errors.

<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>REGISTER NAME</th>
<th>LOW LIMIT</th>
<th>HIGH LIMIT</th>
<th>FACTORY SETTING</th>
<th>ACCESS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40001</td>
<td>Input Relative Value (Hi word)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Read Only</td>
<td>Process value of present input level. This value is affected by Input Type, Resolution, Scaling, & Offset Value. (Relative Value = Absolute Input Value + Offset Value)</td>
</tr>
<tr>
<td>40002</td>
<td>Input Relative Value (Lo word)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Read Only</td>
<td></td>
</tr>
<tr>
<td>40003</td>
<td>Maximum Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>N/A</td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td>40004</td>
<td>Maximum Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>N/A</td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td>40005</td>
<td>Minimum Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>N/A</td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td>40006</td>
<td>Minimum Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>N/A</td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td>40007</td>
<td>Total Value (Hi word)</td>
<td>-19999999</td>
<td>9999999999</td>
<td>N/A</td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td>40008</td>
<td>Total Value (Lo word)</td>
<td>-19999999</td>
<td>9999999999</td>
<td>N/A</td>
<td>Read/Write</td>
<td></td>
</tr>
<tr>
<td>40009</td>
<td>Setpoint 1 Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>100</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40010</td>
<td>Setpoint 1 Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>100</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40011</td>
<td>Setpoint 2 Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>200</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40012</td>
<td>Setpoint 2 Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>200</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40013</td>
<td>Setpoint 3 Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>300</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40014</td>
<td>Setpoint 3 Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>300</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40015</td>
<td>Setpoint 4 Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>400</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40016</td>
<td>Setpoint 4 Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>400</td>
<td>Read/Write Active List (A or B)</td>
<td></td>
</tr>
<tr>
<td>40017</td>
<td>Setpoint 1 Band/Dev. Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40018</td>
<td>Setpoint 1 Band/Dev. Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40019</td>
<td>Setpoint 2 Band/Dev. Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40020</td>
<td>Setpoint 2 Band/Dev. Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40021</td>
<td>Setpoint 3 Band/Dev. Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40022</td>
<td>Setpoint 3 Band/Dev. Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40023</td>
<td>Setpoint 4 Band/Dev. Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40024</td>
<td>Setpoint 4 Band/Dev. Value (Lo word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Active List (A or B). Applicable only for Band or Deviation Setpoint Action.</td>
<td></td>
</tr>
<tr>
<td>40025</td>
<td>Setpoint Output Register (SOR)</td>
<td>0</td>
<td>15</td>
<td>N/A</td>
<td>Read/Write Status of Setpoint Outputs. Bit State: 0 = Off, 1 = On. Bit 3 = S1, Bit 2 = S2, Bit 1 = S3, Bit 0 = S4. Outputs can only be activated/reset with this register when the respective bits in the Manual Mode Register (MMR) are set.</td>
<td></td>
</tr>
<tr>
<td>40026</td>
<td>Manual Mode Register (MMR)</td>
<td>0</td>
<td>31</td>
<td>0</td>
<td>Read/Write Bit State: 0 = Auto Mode, 1 = Manual Mode Bit 4 = S1, Bit 3 = S2, Bit 2 = S3, Bit 1 = S4, Bit 0 = Linear Output</td>
<td></td>
</tr>
<tr>
<td>40027</td>
<td>Reset Output Register</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>Read/Write Bit State: 1 = Reset Output, bit is returned to zero following reset processing; Bit 3 = S1, Bit 2 = S2, Bit 1 = S3, Bit 0 = S4</td>
<td></td>
</tr>
<tr>
<td>40028</td>
<td>Analog Output Register (AOR)</td>
<td>0</td>
<td>4095</td>
<td>0</td>
<td>Read/Write Linear Output Card written to only if Linear Output is in Manual Mode. (MMR bit 0 = 1)</td>
<td></td>
</tr>
<tr>
<td>40029</td>
<td>Input Absolute Value (Hi word)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Read Only Gross value of present Input level. This value is affected by Input Type, Resolution, Scaling, but not affected by Offset Value</td>
<td></td>
</tr>
<tr>
<td>40030</td>
<td>Input Absolute Value (Lo word)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Read Only</td>
<td></td>
</tr>
<tr>
<td>40031</td>
<td>Input Offset Value (Hi word)</td>
<td>-199999</td>
<td>999999</td>
<td>0</td>
<td>Read/Write Input Offset Value plus the Input Absolute Value equals the Relative Input Value (standard meter value).</td>
<td></td>
</tr>
<tr>
<td>40032</td>
<td>Input Offset Value (Lo word)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Read Only</td>
<td></td>
</tr>
</tbody>
</table>

INPUT PARAMETERS

Note 1: The PAX2A should not be powered down while parameters are being changed. Doing so may corrupt the non-volatile memory resulting in checksum errors.

LIST A

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>REFERENCES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>40101</td>
<td>40201</td>
<td>Number of Scaling Points</td>
</tr>
<tr>
<td>40102</td>
<td>40202</td>
<td>Reserved</td>
</tr>
<tr>
<td>40103</td>
<td>40203</td>
<td>Scaling Pt.1 Input Value (Hi word)</td>
</tr>
</tbody>
</table>

LIST B

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>REFERENCES</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>40104</td>
<td>40204</td>
<td>Scaling Pt.1 Input Value (Lo word)</td>
</tr>
</tbody>
</table>
Scaling Pt.1 Display Value (Hi word)
-199999 999999 0 Read/Write 1 = 1 display unit (disregard decimal point)

Scaling Pt.1 Display Value (Lo word)

Scaling Pt.2 thru 15 Values
... Registers 40107-40162 and 40207-40262 hold values for Scaling Points 2 thru 15, and follow the same ordering as Scaling Point 1.

Scaling Pt.16 Input Value (Hi word)
-199999 999999 0 Read/Write 1 = 1 least significant digit (Input Range dependant)

Scaling Pt.16 Input Value (Lo word)

Scaling Pt.1 Display Value (Hi word)
-199999 999999 0 Read/Write 1 = 1 display unit (disregard decimal point)

Scaling Pt.1 Display Value (Lo word)

Setpoint 1 Band/Dev. Value (Hi word)
-199999 999999 0 Read/Write Applicable only for Band or Deviation Setpoint Action.

Setpoint 1 Band/Dev. Value (Lo word)

Setpoint 2 Band/Dev. Value (Hi word)
-199999 999999 0 Read/Write Applicable only for Band or Deviation Setpoint Action.

Setpoint 2 Band/Dev. Value (Lo word)

Setpoint 3 Band/Dev. Value (Hi word)
-199999 999999 300 Read/Write 1 = 1 display unit (disregard decimal point)

Setpoint 3 Band/Dev. Value (Lo word)

Setpoint 4 Band/Dev. Value (Hi word)
-199999 999999 400 Read/Write 1 = 1 display unit (disregard decimal point)

Setpoint 4 Band/Dev. Value (Lo word)

Setpoint Values

<table>
<thead>
<tr>
<th>List A</th>
<th>List B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>REGISTER ADDRESS</td>
<td>REGISTER NAME</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>40348</td>
<td>Line 2 Setpoint 3 Value Access</td>
</tr>
<tr>
<td>40349</td>
<td>Line 2 S3 Band/Dev.Value Access</td>
</tr>
<tr>
<td>40350</td>
<td>Line 2 Setpoint 4 Value Access</td>
</tr>
<tr>
<td>40351</td>
<td>Line 2 S4 Band/Dev.Value Access</td>
</tr>
<tr>
<td>40352</td>
<td>Reserved</td>
</tr>
<tr>
<td>40353</td>
<td>Reserved</td>
</tr>
<tr>
<td>40354</td>
<td>Reserved</td>
</tr>
<tr>
<td>40355</td>
<td>Reserved</td>
</tr>
<tr>
<td>40356</td>
<td>Line 2 Display Color Access</td>
</tr>
<tr>
<td>40357</td>
<td>Line 2 Display Intensity Level Access</td>
</tr>
<tr>
<td>40358</td>
<td>Line 2 Display Contrast Level Access</td>
</tr>
<tr>
<td>40359</td>
<td>Line 2 Zero (Tare) Display Access</td>
</tr>
<tr>
<td>40360</td>
<td>Line 2 Batch Input to Totalizer Access</td>
</tr>
<tr>
<td>40361</td>
<td>Line 2 Reset Totalizer Access</td>
</tr>
<tr>
<td>40362</td>
<td>Line 2 Reset Max (Hi) Display Access</td>
</tr>
<tr>
<td>40363</td>
<td>Line 2 Reset Min (Lo) Display Access</td>
</tr>
<tr>
<td>40364</td>
<td>Line 2 Reset Max and Min Access</td>
</tr>
<tr>
<td>40365</td>
<td>Line 2 Reset Alarm 1 Access</td>
</tr>
<tr>
<td>40366</td>
<td>Line 2 Reset Alarm 2 Access</td>
</tr>
<tr>
<td>40367</td>
<td>Line 2 Reset Alarm 3 Access</td>
</tr>
<tr>
<td>40368</td>
<td>Line 2 Reset Alarm 4 Access</td>
</tr>
<tr>
<td>40369</td>
<td>Line 2 Reset Alarm 3 and 4 Access</td>
</tr>
<tr>
<td>40370</td>
<td>Line 2 Reset Alarm 2, 3 and 4 Access</td>
</tr>
<tr>
<td>40371</td>
<td>Line 2 Reset All Alarms (1-4) Access</td>
</tr>
<tr>
<td>40372</td>
<td>Line 2 Print Request Access</td>
</tr>
<tr>
<td>40373</td>
<td>Line 2 Security Code Value</td>
</tr>
<tr>
<td>40381</td>
<td>Max (Hi) Capture Value Assignment</td>
</tr>
<tr>
<td>40382</td>
<td>Max (Hi) Capture Delay Time</td>
</tr>
<tr>
<td>40383</td>
<td>Min (Lo) Capture Value Assignment</td>
</tr>
<tr>
<td>40384</td>
<td>Min (Lo) Capture Delay Time</td>
</tr>
<tr>
<td>40385</td>
<td>Display Update (readings per second)</td>
</tr>
<tr>
<td>40391</td>
<td>Totalizer Decimal Point</td>
</tr>
<tr>
<td>40392</td>
<td>Totalizer Time Base</td>
</tr>
<tr>
<td>40393</td>
<td>Totalizer Scale Factor</td>
</tr>
<tr>
<td>40394</td>
<td>Totalizer Reset at Power Up</td>
</tr>
<tr>
<td>40395</td>
<td>Totalizer Low Cut Value (Hi word)</td>
</tr>
<tr>
<td>40396</td>
<td>Totalizer Low Cut Value (Lo word)</td>
</tr>
</tbody>
</table>

SECONDARY PARAMETERS

- SEE MODULE 4 FOR PARAMETER DESCRIPTIONS

TOTALIZER PARAMETERS

- SEE MODULE 5 FOR PARAMETER DESCRIPTIONS

SETPOINT PARAMETERS

- SEE MODULE 6 FOR PARAMETER DESCRIPTIONS
<table>
<thead>
<tr>
<th>REGISTER ADDRESS</th>
<th>REGISTER NAME</th>
<th>LOW LIMIT</th>
<th>HIGH LIMIT</th>
<th>FACTORY SETTING</th>
<th>ACCESS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>40428</td>
<td>Standby Operation</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Read/Write</td>
<td>0 = No, 1 = Yes</td>
</tr>
<tr>
<td>40429</td>
<td>Annunciator</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>Read/Write</td>
<td>0 = Off, 1 = Normal, 2 = Reverse, 3 = Flash</td>
</tr>
<tr>
<td>40430</td>
<td>Color</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>Read/Write</td>
<td>0 = No Change, 1 = Green, 2 = Orange, 3 = Red, 4 = Grn/Org, 5 = Red/Org, 6 = Red/Gm, 7 = Line 1 Color</td>
</tr>
<tr>
<td>40431</td>
<td>Probe Failure Action (TC or RTD only)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Read/Write</td>
<td>0 = Off, 1 = On (only applies for TC or RTD input)</td>
</tr>
</tbody>
</table>

Setpoint 3

40441	Assignment	0	3	0	Read/Write	0 = None, 1 = Rel, 2 = Abs, 3 = Total
40442	Action	0	10	0	Read/Write	0 = No, 1 = Ab-HI, 2 = Ab-LO, 3 = AU-HI, 4 = AU-LO, 5 = dE-HI, 6 = dE-LO, 7 = bANd, 8 = bNdIn, 9 = totLo, 10 = totHI
40443	Hysteresis Value	1	65000	2	Read/Write	1 = 1 Display Unit
40444	On Time Delay	0	32750	0	Read/Write	1 = 0.1 Second
40445	Off Time Delay	0	32750	0	Read/Write	1 = 0.1 Second
40446	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
40447	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
40448	Standby Operation	0	1	0	Read/Write	0 = No, 1 = Yes
40449	Annunciator	0	3	1	Read/Write	0 = Off, 1 = Normal, 2 = Reverse, 3 = Flash
40450	Color	0	7	0	Read/Write	0 = No Change, 1 = Green, 2 = Orange, 3 = Red, 4 = Grn/Org, 5 = Red/Org, 6 = Red/Gm, 7 = Line 1 Color
40451	Probe Failure Action (TC or RTD only)	0	1	0	Read/Write	0 = Off, 1 = On (only applies for TC or RTD input)

Setpoint 4

40461	Assignment	0	3	0	Read/Write	0 = None, 1 = Rel, 2 = Abs, 3 = Total
40462	Action	0	10	0	Read/Write	0 = No, 1 = Ab-HI, 2 = Ab-LO, 3 = AU-HI, 4 = AU-LO, 5 = dE-HI, 6 = dE-LO, 7 = bANd, 8 = bNdIn, 9 = totLo, 10 = totHI
40463	Hysteresis Value	1	65000	2	Read/Write	1 = 1 Display Unit
40464	On Time Delay	0	32750	0	Read/Write	1 = 0.1 Second
40465	Off Time Delay	0	32750	0	Read/Write	1 = 0.1 Second
40466	Output Logic	0	1	0	Read/Write	0 = Normal, 1 = Reverse
40467	Reset Action	0	2	0	Read/Write	0 = Auto, 1 = Latch1, 2 = Latch2
40468	Standby Operation	0	1	0	Read/Write	0 = No, 1 = Yes
40469	Annunciator	0	3	1	Read/Write	0 = Off, 1 = Normal, 2 = Reverse, 3 = Flash
40470	Color	0	7	0	Read/Write	0 = No Change, 1 = Green, 2 = Orange, 3 = Red, 4 = Grn/Org, 5 = Red/Org, 6 = Red/Gm, 7 = Line 1 Color
40471	Probe Failure Action (TC or RTD only)	0	1	0	Read/Write	0 = Off, 1 = On (only applies for TC or RTD input)

SERIAL COMMUNICATIONS PARAMETERS

40481	USB Mode	0	1	0	Read/Write	0 = Configuration, 1 = Port
40482	Type	0	2	2	Read/Write	0 = RLC Protocol (ASCII), 1 = Modbus RTU, 2 = Modbus ASCII
40483	Baud Rate	0	5	5	Read/Write	0=1200, 1=2400, 2=4800, 3=9600, 4=19200, 5=38400
40484	Data Bits	0	1	1	Read/Write	0 = 7 Bits, 1 = 8 Bits
40485	Parity	0	2	0	Read/Write	0 = None, 1 = Even, 2 = Odd
40486	Address	0	99	247	Read/Write	RLC Protocol: 0-99
			1	247	Modbus: 1-247	
40487	Transmit Delay	0	250	10	Read/Write	1 = 0.001 Second
40488	Abbreviated Transmission (RLC only)	0	1	0	Read/Write	0 = No, 1 = Yes (Not used when communications type is Modbus)
40489	Print Options (RLC only)	0	15	1	Read/Write	0 = No, 1 = Yes (Not used when communications type is Modbus) Bit 0 – Print Input Value, Bit 1 – Print Total Value, Bit 2 – Print Max & Min Values, Bit 3 – Print Setpoint Values
40490	Load Serial Settings	0	1	0	Read/Write	Changing 40481-40487 will not update the PAX2A until this register is written with a 1. After the write, the communicating device must be changed to new PAX2A settings and this register returns to 0.

ANALOG OUTPUT PARAMETERS

40491	Type	0	2	1	Read/Write	0 = 0-20 mA, 1 = 4-20 mA, 2 = 0-10 V
40492	Assignment	0	9	0	Read/Write	0 = NONE, 1 = EL, 2 = ABs, 3 = TOTAL, 4 = HI, 5 = LO, 6 = S1, 7 = S2, 8 = S3, 9 = S4
40493	Analog Low Scale Value (Hi word)	-199999	999999	0	Read/Write	Display value that corresponds with 0 V, 0 mA or 4 mA output
40494	Analog Low Scale Value (Lo word)	-199999	999999	10000	Read/Write	Display value that corresponds with 10 V or 20 mA output
40495	Analog High Scale Value (Hi word)	-199999	999999	0	Read/Write	Display value that corresponds with 0 V, 0 mA or 4 mA output
40496	Analog High Scale Value (Lo word)	-199999	999999	0	Read/Write	Display value that corresponds with 10 V or 20 mA output
40497	Update time	0	100	0	Read/Write	0 = Max update rate, 1 = 0.1 Second
40498	Probe Failure Action (TC or RTD only)	0	1	0	Read/Write	0 = Low Scale, 1 = High Scale (only applies for TC or RTD input)
SERIAL RLC PROTOCOL COMMUNICATIONS

RLC Communications requires the Serial Communications Type Parameter (TYPE) be set to "rLC".

SENDING SERIAL COMMANDS AND DATA TO THE METER

When sending commands to the meter, a string containing at least one command character must be constructed. A command string consists of a command character, a value identifier, numerical data (if writing data to the meter) followed by a command terminator character * or $.

Command Chart

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Node Address Specifier</td>
<td>Address a specific meter. Must be followed by a one or two digit node address. Not required when address = 0.</td>
</tr>
<tr>
<td>T</td>
<td>Transmit Value (read)</td>
<td>Read a register from the meter. Must be followed by register ID character</td>
</tr>
<tr>
<td>V</td>
<td>Value Change (write)</td>
<td>Write to register or output. Must be followed by register ID character and numeric data.</td>
</tr>
<tr>
<td>R</td>
<td>Reset</td>
<td>Reset a register or output. Must be followed by register ID character.</td>
</tr>
<tr>
<td>P</td>
<td>Block Print Request</td>
<td>Initiates a block print output. Registers are defined in programming.</td>
</tr>
</tbody>
</table>

Command String Construction

The command string must be constructed in a specific sequence. The meter does not respond with an error message to invalid commands. The following procedure details construction of a command string:
1. The first characters consist of the Node Address Specifier (N) followed by a one or two digit node address. The address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
2. After the address specifier, the next character is the command character.
3. The next character is the Register ID. This identifies the register that the command affects. The P command does not require a Register ID character. It prints according to the selections made in print options.
4. If constructing a value change command (writing data), the numeric data is sent next.
5. All command strings must be terminated with the string termination characters * or $. The meter does not begin processing the command string until this character is received. See Timing Diagram figure for differences between terminating characters.

Register Identification Chart

<table>
<thead>
<tr>
<th>ID</th>
<th>VALUE DESCRIPTION</th>
<th>MNEMONIC</th>
<th>APPLICABLE COMMANDS/COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Input (relative value)</td>
<td>INP</td>
<td>T, P, R (Reset command resets input to zero; tares)</td>
</tr>
<tr>
<td>B</td>
<td>Total</td>
<td>TOT</td>
<td>T, P, R (Reset command resets total to zero)</td>
</tr>
<tr>
<td>C</td>
<td>Max Input</td>
<td>MAX</td>
<td>T, P, R (Reset command resets Max to current reading)</td>
</tr>
<tr>
<td>D</td>
<td>Min Input</td>
<td>MIN</td>
<td>T, P, R (Reset command resets Min to current reading)</td>
</tr>
<tr>
<td>E</td>
<td>Setpoint 1</td>
<td>SP1</td>
<td>T, P, V, R (Reset command resets the setpoint output)</td>
</tr>
<tr>
<td>F</td>
<td>Setpoint 2</td>
<td>SP2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Setpoint 3</td>
<td>SP3</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Setpoint 4</td>
<td>SP4</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Band/Deviation 1</td>
<td>BD1</td>
<td>T, V</td>
</tr>
<tr>
<td>J</td>
<td>Band/Deviation 2</td>
<td>BD2</td>
<td>T, V</td>
</tr>
<tr>
<td>K</td>
<td>Band/Deviation 3</td>
<td>BD3</td>
<td>T, V</td>
</tr>
<tr>
<td>L</td>
<td>Band/Deviation 4</td>
<td>BD4</td>
<td>T, V</td>
</tr>
<tr>
<td>M</td>
<td>Absolute Input value</td>
<td>ABS</td>
<td>T</td>
</tr>
<tr>
<td>O</td>
<td>Offset</td>
<td>OFS</td>
<td>T, V</td>
</tr>
<tr>
<td>U</td>
<td>Auto/Manual Register</td>
<td>MMR</td>
<td>T, V</td>
</tr>
<tr>
<td>W</td>
<td>Analog Output Register</td>
<td>AOR</td>
<td>T, V</td>
</tr>
<tr>
<td>X</td>
<td>Setpoint Register</td>
<td>SOR</td>
<td>T, V</td>
</tr>
</tbody>
</table>

Command String Examples:
1. Node address = 17, Write 350 to Setpoint 1.
 String: N17VE350$
2. Node address = 5, Read Input value.
 String: N5TA*
3. Node address = 0, Reset Setpoint 4 output.
 String: RH*

Sending Numeric Data

Numeric data sent to the meter must be limited to 6 digits (-199999 to 999999). Leading zeros are ignored. Negative numbers must have a minus sign. The meter ignores any decimal point and conforms the number to the scaled resolution. (For example: the meter’s scaled decimal point position = 0.0 and 25 is written to a register. The value of the register is now 2.5.

Note: Since the meter does not issue a reply to value change commands, follow with a transmit value command for readback verification.
RECEIVING DATA FROM THE METER

Data is transmitted by the meter in response to either a transmit command (T), a print block command (P) or User Function print request. The response from the meter is either a full field transmission or an abbreviated transmission. The meter response mode is selected in program Module 7 (Abrv).

Full Field Transmission (Address, Mnemonic, Numeric data)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>2 byte Node Address field [00-99]</td>
</tr>
<tr>
<td>3</td>
<td><SP> (Space)</td>
</tr>
<tr>
<td>4-6</td>
<td>3 byte Register Mnemonic field</td>
</tr>
<tr>
<td>7-18</td>
<td>2 byte data field, 10 bytes for number, one byte for sign, one byte for decimal point</td>
</tr>
<tr>
<td>19</td>
<td><CR> carriage return</td>
</tr>
<tr>
<td>20</td>
<td><LF> line feed</td>
</tr>
<tr>
<td>21</td>
<td><SP>* (Space)</td>
</tr>
<tr>
<td>22</td>
<td><CR>* carriage return</td>
</tr>
<tr>
<td>23</td>
<td><LF>* line feed</td>
</tr>
</tbody>
</table>

* These characters only appear in the last line of a block print.

The first two characters transmitted are the node address, unless the node address assigned = 0, in which case spaces are substituted. A space follows the node address field. The next three characters are the register mnemonic. The numeric data is transmitted next. The numeric field is 12 characters long (to accommodate the 10 digit totalizer), with the decimal point position floating within the data field. Negative values have a leading minus sign. The data field is right justified with leading spaces.

The end of the response string is terminated with a carriage return <CR> and <LF>. When block print is finished, an extra <SP><CR> <LF> is used to provide separation between the blocks.

Abbreviated Transmission (Numeric data only)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-12</td>
<td>12 byte data field, 10 bytes for number, one byte for sign, one byte for decimal point</td>
</tr>
<tr>
<td>13</td>
<td><CR> carriage return</td>
</tr>
<tr>
<td>14</td>
<td><LF> line feed</td>
</tr>
<tr>
<td>15</td>
<td><SP>* (Space)</td>
</tr>
<tr>
<td>16</td>
<td><CR>* carriage return</td>
</tr>
<tr>
<td>17</td>
<td><LF>* line feed</td>
</tr>
</tbody>
</table>

* These characters only appear in the last line of a block print.

Meter Response Examples:

1. Node address = 17, full field response, Input = 875
 17 INP 875 <CR><LF>
2. Node address = 0, full field response, Setpoint 2 = 250.5
 SP2 250.5<CR><LF>
3. Node address = 0, abbreviated response, Setpoint 2 = 250, last line of block print
 250<CR><LF><SP><CR><LF>

Auto/Manual Mode Register (MMR) ID: U

This register sets the controlling mode for the outputs. In Auto Mode (0) the meter controls the setpoint and analog output. In Manual Mode (1) the outputs are defined by the registers SOR and AOR. When transferring from auto mode to manual mode, the meter holds the last output value (until the register is changed by a write). Each output may be independently changed to auto or manual. In a write command string (VU), any character besides 0 or 1 in a field will not change the corresponding output mode.

U abcd
e = Analog Output
d = SP4
c = SP3
b = SP2
a = SP1

Example: VU00011 places SP4 and Analog in manual.

Analog Output Register (AOR) ID: W

This register stores the present signal value of the analog output. The range of values of this register is 0 to 4095, which corresponds to the analog output range per the following chart:

<table>
<thead>
<tr>
<th>Register Value</th>
<th>Output Signal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00 4.00 0.00</td>
</tr>
<tr>
<td>1</td>
<td>0.005 4.004 0.0025</td>
</tr>
<tr>
<td>2047</td>
<td>10.000 12.000 5.000</td>
</tr>
<tr>
<td>4094</td>
<td>19.995 19.996 9.9975</td>
</tr>
<tr>
<td>4095</td>
<td>20.000 20.000 10.000</td>
</tr>
</tbody>
</table>

*Due to the absolute accuracy rating and resolution of the output card, the actual output signal may differ 0.15% FS from the table values. The output signal corresponds to the range selected (0-20 mA, 4-20 mA or 0-10 V).

Writing to this register (VW) while the analog output is in the Manual Mode causes the output signal level to update immediately to the value sent. While in the Automatic Mode, this register may be written to, but it has no effect until the analog output is placed in the manual mode. When in the Automatic Mode, the meter controls the analog output signal level. Reading from this register (TW) will show the present value of the analog output signal.

Example: VW2047 will result in an output of 10.000 mA, 12.000 mA or 5.000V depending on the range selected.

Setpoint Output Register (SOR) ID: X

This register stores the states of the setpoint outputs. Reading from this register (TX) will show the present state of all the setpoint outputs. A “0” in the setpoint location means the output is off and a “1” means the output is on.

X abcd
d = SP4
c = SP3
b = SP2
a = SP1

In Automatic Mode, the meter controls the setpoint output state. In Manual Mode, writing to this register (VX) will change the output state. Sending any character besides 0 or 1 in a field or if the corresponding output was not first in manual mode, the corresponding output value will not change. (It is not necessary to send least significant 0s.)

Example: VX10 will result in output 1 on and output 2 off.
COMMUNICATION FORMAT

Data is transferred from the meter through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character. The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

The voltage levels at the Receiver

<table>
<thead>
<tr>
<th>LOGIC</th>
<th>INTERFACE STATE</th>
<th>RS232*</th>
<th>RS485*</th>
</tr>
</thead>
<tbody>
<tr>
<td>mark (idle)</td>
<td>TXD,RXD; -3 to -15 V</td>
<td>a-b < -200 mV</td>
<td></td>
</tr>
<tr>
<td>space (active)</td>
<td>TXD,RXD; +3 to +15 V</td>
<td>a-b > +200 mV</td>
<td></td>
</tr>
</tbody>
</table>

Data is transmitted one byte at a time with a variable idle period between characters (0 to \(\infty\)). Each ASCII character is “framed” with a beginning start bit, an optional parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the meter.

Start bit and Data bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted. Since the sending and receiving devices operate at the same transmission speed (baud rate), the data is read without timing errors.

COMMAND RESPONSE TIME

The meter can only receive data or transmit data at any one time (half-duplex operation). When sending commands and data to the meter, a delay must be imposed before sending another command. This allows enough time for the meter to process the command and prepare for the next transmission.

At the start of the command time interval \(t_1\), the computer program prints or writes the string to the com port, thus initiating a transmission. During \(t_1\), the command characters are under transmission and at the end of this period, the command terminating character (*) is received by the meter. The time duration of \(t_1\) is dependent on the number of characters and baud rate of the channel.

\[t_1 = \frac{10 \times \# \text{ of characters}}{\text{baud rate}} \]

At the start of time interval \(t_2\), the meter starts the interpretation of the command and when complete, performs the command function. This time interval \(t_2\) varies from 2 msec to 15 msec. If no response from the meter is expected, the meter is ready to accept another command.

If the meter is to reply with data, the time interval \(t_3\) is controlled by the use of the command terminating character and the (Serial Transmit Delay parameter (\(d\L_{TR}\)). The standard command line terminating character is “*”. This terminating character results in a response time window of the Serial Transmit Delay time (\(d\L_{TR}\) plus 15 msec. maximum. The \(d\L_{TR}\) parameter should be programmed to a value that allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with “S” results in a response time window of 2 msec minimum and 15 msec maximum. The response time of this terminating character requires that sending drivers release within 2 msec after the terminating character is received.

At the beginning of time interval \(t_3\), the meter responds with the first character of the reply. As with \(t_1\), the time duration of \(t_3\) is dependent on the number of characters and baud rate of the channel.

\[t_3 = \frac{10 \times \# \text{ of characters}}{\text{baud rate}} \]

At the end of \(t_3\), the meter is ready to receive the next command. The maximum serial throughput of the meter is limited to the sum of the times \(t_1\), \(t_2\) and \(t_3\).
MODULE 8 - ANALOG OUTPUT PARAMETERS (8-AnLOut)

ANALOG OUTPUT TYPE

Enter the analog output type. For 0-20 mA or 4-20 mA use terminals 18 and 19. For 0-10 V use terminals 16 and 17. Only one range can be used at a time.

ANALOG OUTPUT ASSIGNMENT

Enter the source for the analog output to retransmit:

- **NONE** = Manual Mode operation. (See Module 7, Serial RLC Protocol).
- **rEL** = Relative (net) Input Value. The Relative Input Value is the Absolute Input Value including the Display Offset Value.
- **AbS** = Absolute (gross) Input Value. The Absolute Input Value is the scaled input value. It does not include the Display Offset Value.
- **totAL** = Totalizer Value
- **Hi** = Maximum Display Value
- **Lo** = Minimum Display Value
- **S1**, **S2**, **S3**, **S4** = Setpoint Values

ANALOG LOW SCALE VALUE

Enter the Display Value that corresponds to 0 mA (0-20 mA) , 4 mA (4-20 mA) or 0 VDC (0-10 VDC).

ANALOG HIGH SCALE VALUE

Enter the Display Value that corresponds to 20 mA (0-20 mA) , 20 mA (4-20 mA) or 10 VDC (0-10 VDC).

ANALOG UPDATE TIME

Enter the analog output update rate in seconds. A value of 0.0 allows the meter to update the analog output at the ADC Conversion Rate.

PROBE BURN-OUT ACTION

Enter the probe burn-out action. In the event of a temperature probe failure, the analog output can be programmed for low or high scale.

MODULE 9 - FACTORY SERVICE OPERATIONS (9-FACTrY)

PARAMETER MENU

RESTORE FACTORY DEFAULTS

Use the

- **P**

and keys to display CODE 66 and press P. The meter will flash

- **rESEt**

and then return to CODE 50. Press the P key to return to Display Mode. This will overwrite all user settings with the factory settings.

MODEL AND CODE VERSION

The meter will briefly display the model (P2A) on Line 1, and the current firmware version (UE r x.xx) on Line 2, and then return to CODE 50.
Preparation for Current, Volt, and Ohm Input Calibration

Warning: Input Calibration of this meter requires a signal source capable of producing a signal greater than or equal to the range being calibrated with an accuracy of 0.01% or better.

Before starting, verify that the Input Range, TC/V, and Excitation Jumper is set for the range to be calibrated. Verify that the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. Selecting \(\text{RTD} \) at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting \(\text{YES} \) and pressing the \(\text{P} \) key will cause the unit to store new calibration settings for the range selected. Pressing \(\text{D} \) at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

Current, Volt and Ohm Calibration Procedure
1. After entering \(\text{CodE 48} \), in Module 9, select the input signal type (\(\text{CodE} \), \(\text{CodE} \), \(\text{CodE} \)) to be calibrated.
2. Press the \(\text{P} \) key until the desired range along with \(\text{D} \) is indicated on Line 1 of the meter.
3. Apply the zero input limit of the range indicated on Line 1 of the meter.
4. Press \(\text{P} \) to select \(\text{YES} \).
5. Press \(\text{P} \). Display will indicate \(\cdot \cdot \cdot \) on Line 2 as the unit reads and stores the new calibration parameter.
6. Display will indicate the desired range along with \(\text{FIL} \) on Line 1 of the meter.
7. Apply the signal level indicated on Line 1 of the meter.
8. Press \(\text{P} \) to select \(\text{YES} \).
9. Press \(\text{P} \). Display will indicate \(\cdot \cdot \cdot \) on Line 2 as the unit reads and stores the new calibration parameter.
10. Repeat Preparation and Calibration Procedure for each Input Range to be calibrated.

Preparation for TC calibration

TC calibration parameters will affect RTD calibration. If using an RTD, it is recommended that the RTD calibration be performed after completing the TC calibration.

Warning: TC Input Calibration of this meter requires a signal source capable of producing a 60 mV signal with an accuracy of 0.01% or better.

Before starting, verify the TC/V jumper is in the TC position. Verify the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. Selecting \(\text{RTD} \) at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting \(\text{YES} \) and pressing \(\text{P} \) key will cause the unit to store new calibration settings for the range selected. Pressing \(\text{D} \) at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

TC Calibration Procedure
1. After entering \(\text{CodE 48} \), in Module 9, select the \(\text{tc} \).
2. Press the \(\text{P} \) key. Display will indicate \(\cdot \cdot \cdot \) with \(\text{D} \) in upper right.
3. Apply 0 mV to input.
4. Press \(\text{P} \) to select \(\text{YES} \).
5. Press \(\text{P} \). Display will indicate \(\cdot \cdot \cdot \) on Line 2 as the unit reads and stores the new calibration parameter.
6. Display will indicate \(\cdot \cdot \cdot \) with \(\text{FIL} \) in upper right.
7. Apply 60 mV to input.
8. Press \(\text{P} \) to select \(\text{YES} \).
9. Press \(\text{P} \). Display will indicate \(\cdot \cdot \cdot \) on Line 2 as the unit reads and stores the new calibration parameter.
10. TC Calibration complete.

Preparation for RTD Input Calibration

RTD calibration is dependent on TC calibration parameters. Therefore, the TC calibration should be performed prior to attempting the RTD calibration.

Warning: RTD Input Calibration of this meter requires a signal source capable of producing a 300 ohm resistance with an accuracy of 0.01% or better.

Before starting, verify that the TC/V Jumper is in the TC position. Verify the RTD jumper is in the proper range. Verify the precision signal source is connected and ready. Allow a 30 minute warm-up period before calibrating the meter. Selecting \(\text{RTD} \) at any calibration step, will cause the unit to maintain the existing calibration parameters for that step. Selecting \(\text{YES} \) and pressing \(\text{P} \) key will cause the unit to store new calibration settings for the range selected. Pressing \(\text{D} \) at any time will exit programming mode, but any range that has been calibrated will maintain the new settings.

RTD Calibration Procedure
1. After entering \(\text{CodE 48} \), in Module 9, select \(\text{rt d} \).
2. Press the \(\text{P} \) key until the desired range along with \(\text{D} \) in upper right corner is indicated on Line 1 of the meter.
3. Apply zero ohms to the input of the meter.
4. Press \(\text{P} \) to select \(\text{YES} \).
5. Press \(\text{P} \). Display will indicate \(\cdot \cdot \cdot \) on Line 2 as the unit reads and stores the new calibration parameter.
6. Display will indicate the desired range along with a value in the upper right corner, in ohms, to be applied in the next step on Line 1 of the meter.
7. Apply the signal level, in ohms, indicated in the upper right corner of Line 1 on the meter.
8. Press \(\text{P} \) to select \(\text{YES} \).
9. Press \(\text{P} \). Display will indicate \(\cdot \cdot \cdot \) on Line 2 as the unit reads and stores the new calibration parameter.
10. Repeat Preparation and Calibration Procedure for each Input Range to be calibrated.

Ice Point Calibration Procedure
1. Remove all option cards.
2. Verify ambient temperature of meter environment is between 20°C and 30°C.
3. Set TC/V jumper in the TC position.
4. Connect a thermocouple with an accuracy of 1°C or better to the meter.
5. In Module 1 of unit programming, verify Input Range (\(\text{CodE} \)) is set to the type thermocouple connected in step 4, Temperature Scale (\(\text{CodE} \)) is \(^\circ \text{C} \), Ice Point Compensation (\(\text{CodE} \)) is turned ON, Decimal Resolution (\(\text{CodE} \)) is 0.0, Rounding Increment (\(\text{CodE} \)) is 0.1 and Display Offset (\(\text{CodE} \)) is set to 0.
6. Place the thermocouple in close thermal contact to a reference thermometer probe. (Use a reference thermometer with an accuracy of 0.25% °C or better.) The two probes should be shielded from air movement and allowed sufficient time to equalize in temperature. (A calibration bath could be used in place of the thermometer.)
7. If a difference exits between PAX2A display and reference thermometer, continue calibration.
8. Note the PAX2A display reading as the “Display Mode” reading to be used in Step 12.
9. Enter Module 9, select \(\text{CodE} \) and press \(\text{P} \).
10. Select \(\text{ICE} \) and press \(\text{P} \).
11. Display will indicate the Existing ICE Point Value.
12. Calculate a new ICE Point Value using: Existing ICE Point Value + (reference temperature – Display Mode reading). All values are in °C.
13. Using \(\text{P} \) and \(\text{P} \) change Existing ICE Point Value to indicate the new ICE Point Value calculated in Step 12.
14. Press \(\text{P} \) and return to Display Mode. Verify the Display Mode reading (with 0 Display Offset) matches the reference temperature. If not, repeat steps 8 thru 14.

Preparation for Analog Output Card Calibration

Warning: Calibration of this meter requires an external meter with an accuracy of 0.005% or better.

Before starting, verify that the precision voltmeter (voltage output) or current meter (current output) is connected and ready. Perform the following procedure.
1. After entering \(\text{CodE 48} \), in Module 9, select \(\text{CodE} \).
2. Using the chart below, step through the five selections to be calibrated. At each prompt, use the PAX2A \(\text{P} \) and \(\text{P} \) keys to adjust the external meter display to match the selection being calibrated. When the external reading matches, or if the particular range is not in need of calibration, press the \(\text{P} \) key to advance to the next range.

<table>
<thead>
<tr>
<th>PAX2A DISPLAY</th>
<th>EXTERNAL METER</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cdot \cdot \cdot)</td>
<td>0.00 mA</td>
<td>(\text{P}) and (\text{P}) to adjust External Meter</td>
</tr>
<tr>
<td>(\cdot \cdot \cdot)</td>
<td>4.00 mA</td>
<td>(\text{P}) and (\text{P}) to adjust External Meter</td>
</tr>
<tr>
<td>(\cdot \cdot \cdot)</td>
<td>20.00 mA</td>
<td>(\text{P}) and (\text{P}) to adjust External Meter</td>
</tr>
<tr>
<td>(\cdot \cdot \cdot)</td>
<td>0.00 V</td>
<td>(\text{P}) and (\text{P}) to adjust External Meter</td>
</tr>
<tr>
<td>(\cdot \cdot \cdot)</td>
<td>10.00 V</td>
<td>(\text{P}) and (\text{P}) to adjust External Meter</td>
</tr>
</tbody>
</table>

3. Calibration Complete.
TROUBLESHOOTING

PROBLEM REMEDIES

No Display At Power-Up Check power level and power connections.

No Display After Power-Up Check Module 3: d-LeU, d-Cont, and LINE 1 program settings.

Program Locked-Out Check for Active User Input, programmed for PLOC. Deactivate User Input. Enter proper access code at COdE 0 prompt.

No Line 1 Display Check Module 3: LINE 1 program setting.

No Line 2 Display Check Module 3: ACCESS program settings.

No Programmable Units Display Check Module 3: UTLES Mnemonic program settings.

Incorrect Input Display Value Check Input Jumper Setting, Input Level, and Input Connections. Verify Module 1 program settings.

Display of OLOL, ULUL, Short, OPEN, or... See General Meter Specifications, Display Messages.

Modules or Parameters Not Accessible Check for corresponding plug-in option card. Verify parameter is valid in regard to previous program settings.

Error Code: ErrKEY Keypad is active at power up. Check for depressed or stuck keypad. Press any key to clear Error Code.

Error Code: EE PrErr Parameter Data Checksum Error. Press any key to clear Error Code, verify all program settings and cycle power. Contact factory if Error Code returns at next power-up.

Error Code: ErrPro Parameter Data Validation Error. Press any key to clear Error Code, verify all program settings and cycle power. Contact factory if Error Code returns at next power-up.

Error Code: EE CAL Calibration Data Validation Error. Contact factory.

Error Code: EE Lin Linear Output Card Data Validation Error. Press any key to clear Error Code and cycle power. If Error Code returns at next power-up, replace Linear Option Card or contact factory.

PARAMETER VALUE CHART

Programmer ________________ Date __________

PAX2A

Meter# _____________ Security Code __________

INPUT SETUP PARAMETERS

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>PARAMETER</th>
<th>USER SETTING</th>
<th>DISPLAY</th>
<th>PARAMETER</th>
<th>USER SETTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>rANGe</td>
<td>INPUT RANGE</td>
<td>_____________</td>
<td>dSPy 1</td>
<td>INPUT 1 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>sCALE</td>
<td>TEMPERATURE SCALE</td>
<td>_____________</td>
<td>dSPy 2</td>
<td>INPUT 2 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>ICE</td>
<td>ICE POINT COMPENSATION</td>
<td>_____________</td>
<td>dSPy 3</td>
<td>INPUT 3 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>ADC</td>
<td>ADC CONVERSION RATE</td>
<td>_____________</td>
<td>dSPy 4</td>
<td>INPUT 4 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>SCL</td>
<td>SCALING DECIMAL POINT</td>
<td>_____________</td>
<td>dSPy 5</td>
<td>INPUT 5 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>round</td>
<td>DISPLAY ROUNCING</td>
<td>_____________</td>
<td>dSPy 6</td>
<td>INPUT 6 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>OFFSET</td>
<td>DISPLAY OFFSET</td>
<td>_____________</td>
<td>dSPy 7</td>
<td>INPUT 7 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>FIlE</td>
<td>DIGITAL FILTER</td>
<td>_____________</td>
<td>dSPy 8</td>
<td>INPUT 8 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>bANd</td>
<td>DIGITAL FILTER BAND</td>
<td>_____________</td>
<td>dSPy 9</td>
<td>INPUT 9 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>PONTS</td>
<td>SCALING POINTS</td>
<td>_____________</td>
<td>dSPy 10</td>
<td>INPUT 10 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>STYLe</td>
<td>SCALING STYLE</td>
<td>_____________</td>
<td>dSPy 11</td>
<td>INPUT 11 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>dPUle 1</td>
<td>INPUT 1 VALUE</td>
<td>_____________</td>
<td>dSPy 12</td>
<td>INPUT 12 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>dSPy 1</td>
<td>DISPLAY 1 VALUE</td>
<td>_____________</td>
<td>dSPy 13</td>
<td>INPUT 13 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>dPUle 2</td>
<td>INPUT 2 VALUE</td>
<td>_____________</td>
<td>dSPy 14</td>
<td>INPUT 14 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>dSPy 2</td>
<td>DISPLAY 2 VALUE</td>
<td>_____________</td>
<td>dSPy 15</td>
<td>INPUT 15 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>dPUle 3</td>
<td>INPUT 3 VALUE</td>
<td>_____________</td>
<td>dSPy 16</td>
<td>INPUT 16 SCALING VALUE</td>
<td>_____________</td>
</tr>
<tr>
<td>dSPy 3</td>
<td>DISPLAY 3 VALUE</td>
<td>_____________</td>
<td>ScLst</td>
<td>ENABLE SCALE LIST</td>
<td>_____________</td>
</tr>
<tr>
<td>dPUle 4</td>
<td>INPUT 4 VALUE</td>
<td>_____________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dSPy 4</td>
<td>DISPLAY 4 VALUE</td>
<td>_____________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dPUle 5</td>
<td>INPUT 5 VALUE</td>
<td>_____________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dSPy 5</td>
<td>DISPLAY 5 VALUE</td>
<td>_____________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dPUle 6</td>
<td>INPUT 6 VALUE</td>
<td>_____________</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dSPy 6</td>
<td>DISPLAY 6 VALUE</td>
<td>_____________</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2-FUNt USER INPUT/FUNCTION KEY PARAMETERS

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>USR ACt</td>
<td>User Active State</td>
<td></td>
</tr>
<tr>
<td>USR-1</td>
<td>User Input 1</td>
<td></td>
</tr>
<tr>
<td>USR-2</td>
<td>User Input 2</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>Function Key 1</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>Function Key 2</td>
<td></td>
</tr>
<tr>
<td>SEC-F1</td>
<td>2nd Function Key 1</td>
<td></td>
</tr>
<tr>
<td>SEC-F2</td>
<td>2nd Function Key 2</td>
<td></td>
</tr>
</tbody>
</table>

4-SCndy SECONDARY FUNCTION PARAMETERS

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-R5</td>
<td>Max Assignment</td>
<td></td>
</tr>
<tr>
<td>H-t</td>
<td>Max Capture Delay Time</td>
<td></td>
</tr>
<tr>
<td>L0-R5</td>
<td>Min Assignment</td>
<td></td>
</tr>
<tr>
<td>L0-t</td>
<td>Min Capture Delay Time</td>
<td></td>
</tr>
<tr>
<td>DSP-t</td>
<td>Display Update Time</td>
<td></td>
</tr>
</tbody>
</table>

5-t o t AL TOTALIZER PARAMETERS

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>dECPn</td>
<td>Totalizer Decimal Point</td>
<td></td>
</tr>
<tr>
<td>eBASE</td>
<td>Totalizer Time Base</td>
<td></td>
</tr>
<tr>
<td>tSCLFAC</td>
<td>Totalizer Scale Factor</td>
<td></td>
</tr>
<tr>
<td>tLo Cut</td>
<td>Totalizer Low Cut Value</td>
<td></td>
</tr>
<tr>
<td>tPwrUp</td>
<td>Totalizer Power-Up Reset</td>
<td></td>
</tr>
</tbody>
</table>

3-dISPLY DISPLAY PARAMETERS

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co lor</td>
<td>Line 1 Display Color</td>
<td></td>
</tr>
<tr>
<td>d-LEV</td>
<td>Display Level</td>
<td></td>
</tr>
<tr>
<td>d-Cont</td>
<td>Display Contrast Level</td>
<td></td>
</tr>
<tr>
<td>LiNE1</td>
<td>Line 1 Display</td>
<td></td>
</tr>
<tr>
<td>LiNE2</td>
<td>Units Mnemonic</td>
<td></td>
</tr>
<tr>
<td>LiNE3</td>
<td>Units Mnemonic</td>
<td></td>
</tr>
<tr>
<td>LiNE4</td>
<td>Units Mnemonic</td>
<td></td>
</tr>
<tr>
<td>Access</td>
<td>Line 2 Loop Accessible Items</td>
<td>NO YES</td>
</tr>
<tr>
<td>INPuc</td>
<td>Line 1</td>
<td></td>
</tr>
<tr>
<td>INPuc</td>
<td>Line 2</td>
<td></td>
</tr>
<tr>
<td>INPuc</td>
<td>Line 3</td>
<td></td>
</tr>
<tr>
<td>bAt</td>
<td>Line 2</td>
<td></td>
</tr>
<tr>
<td>bAt</td>
<td>Line 3</td>
<td></td>
</tr>
</tbody>
</table>

7-Serial SERIAL COMMUNICATIONS PARAMETERS

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>USb</td>
<td>USB Port</td>
<td></td>
</tr>
<tr>
<td>USb</td>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>bAUd</td>
<td>Baud Rate</td>
<td></td>
</tr>
<tr>
<td>dAtA</td>
<td>Word Length</td>
<td></td>
</tr>
<tr>
<td>Para L7</td>
<td>Parity</td>
<td></td>
</tr>
<tr>
<td>Addr</td>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>dElAy</td>
<td>Transmit Delay</td>
<td></td>
</tr>
<tr>
<td>aBBrv</td>
<td>Abbreviated</td>
<td></td>
</tr>
<tr>
<td>dPl</td>
<td>Print Option</td>
<td></td>
</tr>
</tbody>
</table>

6-SEtPNt SETPOINT OUTPUT PARAMETERS

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELEc</td>
<td>Setpoint Selection</td>
<td>S1</td>
</tr>
<tr>
<td>Rssi</td>
<td>Setpoint Source</td>
<td>S2</td>
</tr>
<tr>
<td>Rcl</td>
<td>Action for Setpoint</td>
<td>S3</td>
</tr>
<tr>
<td>SelPnt</td>
<td>Setpoint Value</td>
<td>S4</td>
</tr>
<tr>
<td>brnBdEU</td>
<td>Setpoint Band/Deviation Value</td>
<td>S1</td>
</tr>
<tr>
<td>HystRes</td>
<td>Hysteresis for Setpoint</td>
<td>S2</td>
</tr>
<tr>
<td>t-ON</td>
<td>On Time Delay Setpoint</td>
<td>S3</td>
</tr>
<tr>
<td>t-OFF</td>
<td>Off Time Delay Setpoint</td>
<td>S4</td>
</tr>
<tr>
<td>LOGic</td>
<td>Output Logic</td>
<td></td>
</tr>
<tr>
<td>rESet</td>
<td>Reset Action</td>
<td></td>
</tr>
<tr>
<td>Stndby</td>
<td>Standby Operation</td>
<td></td>
</tr>
<tr>
<td>Annun</td>
<td>Output Annunciator Light</td>
<td></td>
</tr>
<tr>
<td>Co lor</td>
<td>Change Color</td>
<td></td>
</tr>
<tr>
<td>brnAct</td>
<td>Probe Burn-Out Action</td>
<td></td>
</tr>
</tbody>
</table>

8-AnLOut ANALOG OUTPUT PARAMETERS

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
<th>User Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTypE</td>
<td>Analog Type</td>
<td></td>
</tr>
<tr>
<td>Ross</td>
<td>Analog Assignment</td>
<td></td>
</tr>
<tr>
<td>ArAnLog</td>
<td>Analog Low</td>
<td></td>
</tr>
<tr>
<td>ArAnLog</td>
<td>Analog High</td>
<td></td>
</tr>
<tr>
<td>UpDATe</td>
<td>Analog Update Time</td>
<td></td>
</tr>
<tr>
<td>brnAct</td>
<td>Probe Burn-Out Action</td>
<td></td>
</tr>
</tbody>
</table>
LIMITED WARRANTY

The Company warrants the products it manufactures against defects in materials and workmanship for a period limited to two years from the date of shipment, provided the products have been stored, handled, installed, and used under proper conditions. The Company’s liability under this limited warranty shall extend only to the repair or replacement of a defective product, at The Company’s option. The Company disclaims all liability for any affirmation, promise or representation with respect to the products.

The customer agrees to hold Red Lion Controls harmless from, defend, and indemnify RLC against damages, claims, and expenses arising out of subsequent sales of RLC products or products containing components manufactured by RLC and based upon personal injuries, deaths, property damage, lost profits, and other matters which Buyer, its employees, or sub-contractors are or may be to any extent liable, including without limitation penalties imposed by the Consumer Product Safety Act (P.L. 92-573) and liability imposed upon any person pursuant to the Magnuson-Moss Warranty Act (P.L. 93-637), as now in effect or as amended hereafter.

No warranties expressed or implied are created with respect to The Company’s products except those expressly contained herein. The Customer acknowledges the disclaimers and limitations contained herein and relies on no other warranties or affirmations.